Pavel Kábrt, V humnech 10/14, 193 00 Praha – Horní Počernice, tel 900 44 015, 0602 304 879


Problém informace při tvorbě proteinů



Yüklə 1,33 Mb.
səhifə16/17
tarix24.04.2018
ölçüsü1,33 Mb.
#39963
1   ...   9   10   11   12   13   14   15   16   17

Problém informace při tvorbě proteinů
Jak lze dosáhnout správného uspořádání stavebních kamenů (aminokyselin), když na biologickou funkci lze pohlížet jako na informační problém. Množství informace potřebné k tvorbě nějakého systému nebo složky systému závisí na počtu požadovaných instrukcí. Zcela náhodné uspořádání aminokyselin nevyžaduje žádné specifické instrukce. Tvorba krystalu vyžaduje několik pokynů, které charakterizují základní jednotku krystalu. Opakováním těchto pokynů lze získat velký krystal. Příprava novin vyžaduje mnohem více informací, protože písmena musí být umístěna na stránce v určitém pořadí tak, aby vznikala smysluplná slova, věty, odstavce a články. Tvorba biologicky funkčních proteinů je, jak uvidíme dále, analogická tvorbě novin.

Představme si, že chceme napsat větu "JAK VZNIKL ŽIVOT?" Nejprve dáme přednost problému, který představuje směs L- a D-aminokyselin před pouhými L-aminokyselinami. To je totéž, jako otočení písmen o 180o vzhledem k ose, která prochází větou. Písmena otočená vzhůru nohama představují D-aminokyseliny smíchané ve větě s L-aminokyselinami.


JA. VZ.IK. Ž.VO..
Problém, který nastane, když se mezi aminokyselinovými stavebními kameny objeví jiné než peptidové vazby, je uveden následovně (obr. 5.4 ukazuje vlastní peptidovou vazbu). Správné umístění sousedících písmen bylo změněno tak, že některá písmena jsou nezvykle orientována. Informace ve větě je dále ohrožena.
JA. .ZN.K. .I.O..
Nakonec je na našem původním tvrzení ilustrován problém nesprávné sekvence tak, že některá písmena přeskupena. Původní zpráva je tak zcela zatemněna.
KVI JZAKVO ŽNILT?
Jestliže budeme všechny tři problémy superponovat, bude zcela nemožné dešifrovat původní zprávu - dojde k naprosté ztrátě funkce. Ke stejné ztrátě biologické funkce dochází, pokud polymer neobsahuje pouze L-aminokyseliny, pokud v řetězci, který tvoří molekulu proteinu, nejsou výhradně peptidové vazby a správná sekvence aminokyselin.

Největším problémem však je, jak zajistit používání pouze písmen anglické abecedy, je-li k dispozici "abecední polévka" obsahující mnoho anglických písmen (představují aminokyseliny), ale také čínské, řecké a hebrejské symboly (představující jiné druhy organických molekul v prebiotické polévce), a jak z ní získat potřebná písmena J, A, 2 x K, V, Z, N, 2 x I, L, Ž, O, T.

V roce 1984 jsme navrhli, že vznik života je v zásadě problémem informace,43 ale tato představa není pouze naše. Bernd-Olaf Kuppers říká v Information and the Origin of Life (1990): "Problém vzniku života je v zásadě rovnocenný problému vzniku biologické informace."44 V podobném smyslu se vyslovili i Jeffrey Wicken a Robert Shapiro koncem osmdesátých let a A.E. Wilder Smith a Hubert B. Yockey v sedmdesátých letech.45
Tvorba bílkoviny jako problém nepravděpodobnosti
Problém tvorby funkčních proteinů z aminokyselinových stavebních kamenů lze hodnotit také z pozice pravděpodobnosti a statistiky. Pro zjednodušení předpokládejme, že pravděpodobnost výběru L-aminokyseliny ve srovnání s D-aminokyselinou je 50 % a že pravděpodobnost spojení dvou aminokyselin peptidovou vazbou je také 50 %. Předpokládáme-li, že všech dvacet aminokyselin bylo v prebiotické polévce přítomno ve stejných koncentracích, pak pravděpodobnost umístění správné aminokyseliny na správném místě bude 5 %. První dva předpoklady jsou reálné na rozdíl od třetího, který může být pro některé aminokyseliny příliš nízký a pro některé příliš vysoký.

Zanedbáme-li případné reakce s jinými sloučeninami, získáme pravděpodobnost správného umístění aminokyseliny 0,5 x 0,5 x 0,5 = 0,0125. Pravděpodobnost správného uspořádání N aminokyselin bude 0,0125 x 0,0125 x ... atd. až do počtu N členů 0,0125. Má-li funkční protein 100 aktivních míst, pak pravděpodobnost, že bude bezchybně utvořen, získáme, když číslo 0,0125 budeme 100 krát násobit sebou samým; výsledek je 4,9 x 10-191. Tato nepravděpodobnost nezbytně přiměla všechny vědce pracující v tomto oboru k zavržení náhodného, nepředvídaného uspořádání neboli šťastné náhody jako vysvětlení vzniku života.

Předpokládáme-li, že všechen uhlík na Zemi existuje ve formě aminokyselin a že aminokyseliny mohly chemicky reagovat maximální možnou rychlostí 1012/s po dobu jedné miliardy let (nejdelší možná doba mezi ochlazením Země a objevem života), opět zjistíme, že tvorba jediného funkčního proteinu je neuvěřitelně nepravděpodobná (10-65), jak ukázal H. P. Yockey.46 D. Kenyon, G. Steinman a Sir Frederick Hoyle dospěli k podobným závěrům: "Současný scénář vzniku života je přibližně stejně pravděpodobný jako napsání 747 tornádem vířícím na smetišti."47
Tvorba DNA a RNA

Problémy prebiotické syntézy DNA a RNA jsou ještě větší než tomu bylo u proteinů. Shapiro vyjádřil výsledky své práce v této oblasti slovy: "Důkaz, který je v současné době k dispozici, neprokazuje dostupnost ribózy v prebiotické polévce, snad s výjimkou velmi krátké doby a nízké koncentrace jako části složité směsi a za podmínek nevhodných pro syntézu nukleosidů."48 S obsahem článku, v němž je uvedena tato poznámka, bylo již dříve seznámeno 300 vědců z celého světa na sympoziu Mezinárodní společnosti pro studium vzniku života (the International Society for the Study of the Origin of Life), aniž by byla základní tvrzení nějak zpochybněna.

RNA a její komponenty je obtížné syntetizovat i za nejlepších laboratorních podmínek; uskutečnění syntézy za přijatelných prebiotických podmínek by bylo ještě nepravděpodobnější. Např. chemická cesta užívaná při syntéze ribózy, klíčového stavebního kamene RNA, vede ke vzniku velkého množství i jiných cukrů, které by znemožňovaly syntézu RNA. Další důležitou záhadou je, jak se mohl fosfor stát kritickou složkou RNA a DNA, když se v přírodě vyskytuje relativně řídce.

Leslie Orgel ze Salkova ústavu biologických věd, který pravděpodobně provedl více výzkumných prací týkajících se scénáře "RNA světa" než jiní vědci, uvádí, že pokusy napodobující časná stadia "RNA světa" jsou příliš komplikované, než aby reprezentovaly přijatelný scénář vzniku života. Orgel byl nedávno citován v Scientific American: "Je třeba dosáhnout situace, kdy se obrovské množství podmínek a procesů nachází bez jediné chyby ve správném stavu."49 Nositel Nobelovy ceny Sir Francis Crick říká ve své knize Life Itself: "Vznik života vypadá téměř jako zázrak, protože pro své uskutečnění vyžaduje splnění velkého množství podmínek."50 V závěru svého přehledného článku z roku 1988 uvádí Dose v souvislosti se syntézou biopolymerů DNA a RNA: "Obtíže, které je třeba překonat, leží v současnosti za hranicí naší představivosti..." Schéma na obr.2 (ukazuje pravděpodobný průběh syntézy proteinu na ribozómech pomocí nukleových kyselin) demonstruje naši nevědomost. Bez zcela nových pohledů na evoluční procesy, které možná vyžadují nové způsoby myšlení, bude tato nevědomost trvat dál."51 Je zřejmé, že problémy informace či složitosti spojené se vznikem života jsou komplikované a dokonce zatvrzele vzdorující našemu úsilí.


Snahy o vyřešení informačního problému
V současnosti bylo provedeno několik pokusů o záchranu Oparinovy teorie prebiotické polévky. V létě 1990 způsobil Julius Rebek Jr., chemik z Massachusetts Institute of Technology (MIT), rozruch prohlášením, že syntetizoval organickou molekulu, která dokáže replikovat sama sebe. Molekula aminoadenosin triacid ester AATE je tvořena dvěma komponentami, z nichž jedna připomíná protein a druhá nukleovou kyselinu. Po přidání do roztoku výchozích sloučenin v chloroformu dokáže AATE fungovat jako předloha pro syntézu nové AAET molekuly. G. Joyce, odborník na RNA ze Scrippsovy kliniky, se vyjádřil následujícím způsobem v Scientific American k Rebekově práci: "AATE se replikují pouze za vysoce umělých, nepřirozených podmínek a dokonce, což je ještě důležitější, se reprodukují příliš přesně. Bez mutací se molekuly nemohou vyvíjet v duchu Darwinových myšlenek." V témže článku říká Leslie Orgel: "Nevidím důležitost této molekuly pro vznik života."52

Jeffrey Wicken dokazuje, že druhá věta termodynamiky skutečně řídí chemické reakce zodpovědné za vznik života, spíše než by působila jako překážka. Dokazuje, že entropie umožňuje polymerace, při nichž se spojují stavební kameny za vzniku biopolymerů typu DNA, RNA a proteinů.53 V současné kritice Wickenovy práce poznamenává Bradley, že entropie jako řídící síla spojování stavebních kamenů do polymerního řetězce je maximálně účinná na počátku polymerace, kdežto později se stává bezvýznamnou, neboť lze takto získat jen malé výtěžky polymerů. Nebylo by to tak, kdyby polymerace probíhající v těchto pokusných systémech byla nějakým způsobem usnadněna.54 Např. aminokyseliny mohou polymerovat, je-li pomocí tepla odstraňována voda vznikající jako vedlejší produkt. Tím je zabráněno depolymeraci, jak experimentálně prokázal S. W. Fox.55

Wickner dále dokazuje, že informační požadavky živých systémů nezávisejí na termodynamických úvahách (a nemohou tedy být uskutečněny prostřednictvím toku energie systémem). S tímto tvrzením zcela souhlasíme. Opíraje se o dřívější práci Steinmana a Coleho (1967), Wicken dále navrhuje, že vnitřní chemické vlastnosti molekulárních stavebních kamenů, jako je vrozená tendence tvorby nenáhodných sekvencí v důsledku stérických vlivů, mohou vysvětlovat vznik specifických sekvencí molekul v biopolymerech.56 Novější analýza 250 proteinů ve srovnání s 10 proteiny, které analyzovali Steinman a Cole, však dokázala, že vezmeme-li v úvahu větší množství proteinů, nenalezneme popisované vztahy v sekvenci aminokyselin.57

Nedokáže-li tok energie systémem "tvořit" nezbytnou informaci skrytou v pozoruhodné specifitě biopoloymerů, a jsou-li dědičné snahy samouspořádání hmoty příliš slabé, než aby zodpovídaly za pozorovanou složitost molekul, co se tedy skrývá za informačním obsahem těchto polymerů? Bernd-Olaf Kuppers obhajuje selekci, aby se vyhnul problému nesmírné nepravděpodobnosti tkvící v složitostech i těch nejjednodušších živých systémů. Říká: "Molekulárně- Darwinistický přístup se zakládá na pracovní hypotéze, že přirozený výběr v Darwinově smyslu se již nalézá v oblasti neživé hmoty...[Tato myšlenka] se může uplatnit jen za předpokladu skutečného fungování Darwinova přirozeného výběru v říši neživé hmoty."58 Protože Darwinův přirozený výběr předpokládá v biologickém světě replikující se systémy, střetáváme se zde se zcela odlišným druhem selekce. Je obtížné si představit na jakém základě by přirozený výběr mohl působit na molekulární úrovni, aby umožnil vznik pozoruhodné složitosti spojené s minimálními požadavky života: replikace, uložení informací a zpracování energie. Dnes postrádá Kupperova hypotéza na významu, neboť neexistuje žádný experiment, který by ji podpořil.


Krach teorie prebiotické polévky a její alternativy
Zkrachování koncepce Oparinovy teorie prebiotické polévky bylo zdůrazněno během diskuze na mezinárodním sympoziu ISSOL v Barkeley v Kalifornii v roce 1986. Zastánci prebiotické syntézy proteinů dokazovali, že tvorba RNA byla za prebiotických podmínek téměř nemožná, což druhá část, upřednostňující tvorbu RNA, spíše nebrala na vědomí než vyvracela pomocí důkazů. Jejich odpovědí bylo, že proteiny jsou příliš nevhodné pro roli nositelů prvních živých systémů, protože nejsou dostatečně přizpůsobivé. Protože zastánci proteinů také nepředložili žádné důkazy, kterými by vyvrátili tuto kritiku, diskuze skončila neblaze prohloubením propasti mezi oběma stranami bez vytvoření nových slibných alternativ.

Kritika shrnutá v této kapitole (podrobněji viz A.G. Cairns-Smith [1982], Thaxton, Bradley a Olsen [1984] a Shapiro [1986]) je pro teorii prebiotické polévky téměř, ne-li skutečně, osudná. Jaké jiné hypotézy existují a proč byla tato teorie prebiotické polévky opouštěna tak pomalu? Tento pomalý odchod teorie i přes množství problémů, které jsou s ní spojeny, napovídá cosi o přijatelnosti alternativních hypotéz, které byly navrženy v posledních deseti letech jako její potenciální nástupci.



Vznik života na povrchu jílu. V Genetic Takeover and the Mineral Origins of Life, chemik z university v Glasgow, A.G. Cairns-Smith navrhuje, že ke vzniku života, dostatečně složitého, se schopností mutací a dalšího vývoje, došlo na pevných substrátech, pravděpodobně krystalických jílech. Dokazuje, že některé jíly byly k tomuto předurčeny díky zvýšené schopnosti vázat nebo syntetizovat organické sloučeniny jakými jsou nukleové kyseliny nebo proteiny. Nakonec se snad vytvořily dostatečně složité organické sloučeniny, aby se mohly začít replikovat a vyvíjet se.59 Cairns-Smith byl v roce 1991 citován v článku v Scientific American jako vědec, spokojeně přijímající nedostatky svojí hypotézy: " Nikdo nebyl schopen laskavým přemlouváním přinutit v laboratoři jíl k něčemu, co připomíná evoluci; ani nikdo nenalezl v přírodě cokoliv co by připomínalo organizmus vzniklý na povrchu jílu."60

Hydrotermální průduchy na dně moře. Koncem sedmdesátých let objevili vědci na dně moře poblíž Galapágských ostrovů několik hydrotermálních průduchů, které podporovaly bujení společenstev živých organismů včetně kroužkovců tubeworms, mlžů a bakterií, jejichž primárním zdrojem energie není světlo, ale sloučeniny síry uvolňované z průduchů. Od té doby byly nalezeny desítky podobných průduchů. John Corliss z NASA Goddard Space Flight Center předpokládal, že průduchy mohou dodat energii a živné látky potřebné pro vytvoření a udržování života.61

Teorie tepelných průduchů ani náznakem nevysvětluje, jak mohl být vyřešen informační problém, pouze uvádí, že energií bohaté okolí mohlo usnadnit tvorbu organických polymerů, které byly důležité pro vznik života. Práce potřebná pro uspořádání stavebních kamenů, kterou jsme dříve odhadli na 30 cal/g, mohla být tímto způsobem vykonána, avšak hypotéza tepelných průduchů neposkytuje žádné řešení podstatně naléhavějšího problému informační práce.

Stanley Miller a Jeffrey Bada na kalifornské univerzitě v San Diegu uskutečnili pokus, kterým dokázali, že přehřátá voda vytékající z průduchů, jejíž teplota může být vyšší než 572o F, by organické sloučeniny spíše ničila než tvořila. V důsledku toho považuje Miller průduchy spíše za překážku vzniku života. Na základě odhadů, že veškerá voda oceánu projde tepelným průduchem každých deset milionů let62, vypočítal Miller horní hranici koncentrace aminokyselin v oceánu jako 3 x 10-4 M.65 Od té doby se James Corliss i ostatní přiklánějí k názoru, že se současné organismy do těchto průduchů pouze přestěhovali. Vznik života v tepelném průduchu zůstává pochybnou myšlenkou postrádající jak detailní koncepci, tak experimentální podporu.

První metabolické hypotézy. Některé poměrně nedávné návrhy uvádějí, že život mohl začít na pevném povrchu jako metabolický proces - cyklická chemická reakce řízená určitým zdrojem energie. Gunter Wachterschauser navrhuje, že pyrit obsahující atomy železa a síry má kladný povrchový náboj, k němuž mohly být připojeny organické molekuly. Probíhající tvorba tohoto minerálu mohla dodávat energii pro vzájemné reakce organických molekul, čímž by vzrůstala jejich složitost. Povšimněte si, že se tento model nezabývá problémem, jak zabudovat informaci do organických molekul, ale pouze možností usnadnění polymerace. Ke své cti sám Wachterschauser připouští, že jeho teorie je z větší části pouhou spekulací.64

Teorie Christiana de Duve, která je popsána v Blueprint for a Cell se soustředí na sloučeniny síry nazývané thioestery.65 Opět jde o snahu nalézt zdroj energie, která by při průchodu systémem chemických reakcí usnadnila tvorbu důležitých biopolymerů. Ale opět je opominuta otázka informace; tento systém by pouze dodal energii odpovídající 30 cal/g entalpie a tepelným entropickým změnám. V tomto případě bude tedy nanejvýše usnadněna polymerace jinak těžko spojitelných molekul stavebních kamenů, bez ohledu na jejich přesnou sekvenci a uspořádání, které je nezbytné pro vytvoření biologické funkce.



Samouspořádání v přírodě. Laureát Nobelovy ceny I. Prigogine studoval do značné míry snahu po samouspořádání v přírodě, jejímž příkladem jsou konvekční tok tepla a tvorba vírů, jež lze pozorovat např. při vypouštění vody z vany.66 Prigoginova práce vytvořila rámec pro pochopení okolností, za nichž se projeví fenomén samouspořádání se. Zejména ukázal, že tyto jevy jsou pozorovány v systémech nalézajících se daleko od rovnováhy a je pro ně charakteristické nelineární chování.

Někdy se uvádí, že Prigoginova práce nabízí potenciální řešení problému vzniku života, ačkoliv Prigogine sám je v tomto ohledu mnohem skromnější.67 Při aplikaci jeho práce na vznik života narážíme na problém, že spontánní uspořádání, které je typické pro Prigogineovy systémy vzdálené rovnováze, se jen málo podobá informačně bohatým a aperiodickým strukturám biopolymerů. Existuje vzdálená podobnost mezi uspořádaností nalézající se v krystalech, vírech a pod. a specifickou složitostí potřebné sekvence aminokyselin tvořících funkční protein. Je tedy obtížné si představit, jak mohou tyto myšlenky vyřešit záhadu nalézající se v samém srdci tajemství vzniku života.



Eigen a "hypercyklus". M. Eigen vytvořil jednu z nejkomplexnějších prací ve snaze zjistit, jak mohl vzniknout jednoduchý živý systém.68 Jeho práce je občas považována za řešení problému vzniku života. Eigen však uznává, že jeho "jednoduchý" systém je ve skutečnosti dosti složitý, představuje uskupení různých molekul proteinů a RNA. Souhlasí s tím, že se jeho práce týká spíše vývoje možných dávných živých systémů než jejich vzniku. Nemá tedy pro pochopení vzniku života význam snad kromě toho, že podrobně definuje systém s minimální složitostí, který je schopen zajišťovat základní životní funkce a má jistou schopnost se vyvíjet.
Informace: svatý grál výzkumu vzniku života
Bylo vytvořeno množství důmyslných schémat ukazujících průběh jinak energeticky nevýhodných chemických reakcí, pomocí nichž se z rozličných stavebních kamenů utvářejí biopolymery. Tvorba biopolymerů (např. proteinů) pouze ze správných stavebních kamenů (tj. aminokyselin v případě proteinů) a to pouze ze správných izomerů (L-aminokyselin) spojených pouze správnými vazbami (peptidovými vazbami) a se správným pořadím stavebních kamenů (vlastní sekvence aminokyselin v proteinu) představuje skutečně hrůzu nahánějící problém.

Živé systémy řeší tento problém pravděpodobně pomocí informačně bohatých templátů. Tak lze tvorbě informačně bohatých biopolymerů snáze porozumět. Vznik těchto složitých systémů, které jsou jednak informačně bohaté a jednak schopné autoreprodukce, je jádrem problému výzkumu vzniku života.

Sir Francis Crick poté, co uvážil tyto i další problémy spojené se vznikem života, poznamenal: "Vznik života vypadá jako zázrak, neboť je provázen množstvím obtíží."69 V roce 1988 uzavírá Dose svůj vynikající přehledný článek tvrzením, že řešení obtíží výzkumu vzniku života se zdá být "mimo naši představivost."70 Shapiro důrazně dokládá, že všechny současné teorie zkrachovaly a že musíme nalézt nové a úspěšnější paradigma, které povede naše hledání přirozeného vysvětlení vzniku života.71

S tím naprosto souhlasíme. Oparinovo-Haldaneovo paradigma již zřejmě neplní svou funkci, ale neexistují ani vyhlídky na vhodnou náhradu. Domníváme se však, že není nezbytné hledat řešení problému pomocí obvyklých schémat vycházejících pouze z chemie a fyziky, moudrostí, která omezila naše uvažování na přirozené příčiny.

V roce 1967 publikoval v Chemical and Engineering News britský filozof a fyzikální chemik Michael Polanyi významný článek nadepsaný "Život za hranicemi chemie a fyziky" (Life Transcending Physics and Chemistry). Uvedl, že chemie a fyzika mohou zodpovědně vysvětlit všechno v přírodě kromě lidských strojů a živých systémů. Zatímco, řekl, mohou být operace každé části automobilu vysvětleny v rámci obvyklých hranic přírodních zákonů, jak je ozřejmuje chemie a fyzika, jeho existence vyžaduje vysvětlení, které přesahuje samotnou chemii a fyziku. Chod automobilu je umožněn působením zákonů chemie a fyziky za značně neobvyklých omezujících podmínek (informačně bohatých), které musel kdosi stanovit.

Polanyi dokazuje, že u živých systémů je tentýž problém. Operace v nich probíhající lze dobře chápat v rámci chemie, ale jejich vznik vzdoruje jednoduchému chemickému a fyzikálnímu vysvětlení. Zdroj informačně bohatých počátečních podmínek leží mimo říši samotné chemie a fyziky.

V následující části se podrobněji zmíníme o hypotéze, která vysvětluje existenci živých systémů působením nějaké inteligentní příčinné síly.
Hypotéza inteligentního záměru

Ve světle předcházející analýzy se domníváme, že existují důvody k pochybám, zda se uskutečnila prebiotická evoluce, a jako alternativu předkládáme inteligentní záměr. Sagan, Miller, Fox, Shapiro a většina dalších vědců zabývajících se vznikem života trvala na tom, aby byla dále hledána přirozená cesta; jsou přesvědčeni o tom, že prebiotickou evolucí vznikl život. Naše pochybnosti pramení však z praktických zkušeností. Zatvrzelá obhajoba prebiotické evoluce vychází z filozofické oddanosti, jež je zcela vzdálena praktické zkušenosti.

Vědci obvykle odmítají možnost alternativy k přirozenému procesu pokud jde o dichotomii přirozený-nadpřirozený. Mnoho teistů a naturalistů v metafyzice72 souhlasí s přijetím metodologického naturalismu - tj. oddanost hledání přirozených procesů bez ohledu na metafyzickou oddanost. Ať nadpřirozeno existuje nebo ne, říkají, že je nezbytné přistupovat k vědě z hlediska přirozených procesů, protože ostatní způsoby nemají s vědou co dělat. Souhlasíme se záměrem tohoto přístupu chránit nedotknutelnost vědy. Domníváme se však, že tento přístup je chybný a že jeho zastánci kladou nadbytečný požadavek jak na přírodu tak na vědeckou metodologii. Tento názor se nezmění ani v případě, že bude nalezena přirozená příčina nepřetržitého chodu světa. Myslíme si, že uvedený přístup je v rozporu s duchem vědy a zavání spíše metafyzickou oddaností - která se, pokud není rozpoznána, stává nebezpečnou.73

Prvním krokem směřujícím k nové alternativě je odhalení skutečnosti, že výrazy "přirozený-nadpřirozený" jsou vlastní metafyzice, ale ne vědě, která se opírá o zkušenost. V mezích zkušenosti používáme pojem příčiny v obecném smyslu, v němž je zahrnuto přirozené i inteligentní působení. To znamená, že uvádíme do vztahu přirozenou a inteligentní příčinu bez ohledu na metafyzické kategorie. Věda je slepá k metafyzice a ani nepotvrzuje ani nepopírá nadpřirozeno; také ani nepotvrzuje ani nepopírá naturalismus, který vysvětluje vše přírodními procesy.

Člověk velmi často nedokáže pouze na základě svých zkušeností rozpoznat, zda příčina události je přirozená nebo inteligentní. V takovém případě je rozumné držet se rady filozofa Ludwiga Wittgensteina: "O čem člověk nedokáže hovořit, o tom má mlčet."74 Mnoho lidí je však puzeno zvláštní silou, která je nutí pojmenovat příčinu, i když si jí nemohou být jisti. "Příčina" je téměř vždy plodem jejich filozofie nebo náboženství. Někdy se později ukáže, že měli pravdu a jsou oslavováni pro jejich inteligenci a předvídavost. Jejich tvrzení bylo však jen přáním nebo tušením, i když mohlo vzniknout se vší jistotou a přesvědčením očitého svědka. Jindy se mýlí. V obou případech tvoří jejich pošetilé tvrzení, které nemá experimentální podklad, překážku v poznávání přírody.

Bohužel, uvedené chování není v historii vědy neobvyklé. Jak uvedl Daniel Boorstin: "Největší překážkou objevení tvaru Země, kontinentů a oceánů nebyla nevědomost, ale iluze o znalostech."75 Podle naší zkušenosti je tento jev tím, co vedlo k přehnanému očekávání nalezení organických sloučenin, ne-li samého života, na Marsu, a zodpovídá za současný optimismus těch, kteří dychtí po uskutečnění dalšího výzkumného letu na Mars.



Argumentovaní na základě analogie. Na základě čeho lze jako příčinu nějaké minulé události vidět inteligenci? Obecně řečeno, k důkazu vlivu inteligence a k důkazu přirozené příčiny používáme stejnou metodu, tj. stejnou smyslovou zkušenost. Nazývá se metodou analogie. Filozof David Hume (1711 - 1776), který se metodou analogie zabýval velmi intenzivně, řekl: "Očekáváme, že příčiny, které vyhlížejí podobně, budou mít podobné následky." Hume dále uvádí: "Stejné pravidlo platí, jestli příčina způsobila existenci neinteligentní nevědomé hmoty nebo racionálního inteligentního bytí."76 Pokud tedy při odpolední procházce po pláži narazíme na nápis v písku "John miluje Marii", dospějeme na základě našich zkušeností k závěru, že ho někdo, snad i John nebo Marie, napsali.

Na dokreslení metody analogie si představme archeologické naleziště. Archeologové normálně používají principy analogie při určování inteligentní příčiny existence nějakého nálezu. Úvaha je asi taková: Dnes vidíme umělce vyrábějící keramiku. Zkoumáme-li tedy archeologické naleziště v Mezopotámii a nalezneme střepy hliněné nádoby, budeme se logicky domnívat, že i ji vytvořil hrnčíř.

Někdy však nelze rozhodnout tak jednoduše. Např. eolity byly považovány za artefakty vytvořené z pazourku; později se přišlo na to, že se podobají přírodním pazourkům, které se rozpadly přemíláním v proudu vody. Archeolog Kenneth Oakley však upozornil: "Pro přirozeně odštěpené pazourky obecně platí, že se dají snadno odlišit od těch, které vytvořil člověk, protože jejich povrch postrádá logiku, pazourkovité kameny se vyskytují v neekonomickém nadbytku, hrany jsou potlučené a povrchy pazourku jsou zpravidla drsné."77

V devatenáctém století propagoval astronom John F. W. Herschel analogickou metodu dedukce neznámých příčin na základě pozorovaných příčin: "Jsou-li si dva jevy velmi důkladně a nápadně podobné, a je-li současně příčina jednoho z nich zřejmá, bude stěží možné nesouhlasit s analogickou příčinou i druhého jevu, i když jako taková není jasně viditelná."78 Metoda analogie určení příčin zaujímá také důležité místo ve významné práci Charlese Lyella, jejíž ústřední myšlenka - "Současnost je klíčem k minulosti"79 je uchovávána v geologické literatuře jako svátost.

Vědci se spoléhali na metodu analogie více než 150 let. Obrovský úspěch vědy je přinejmenším částečným důkazem správnosti této metody. Na základě zkušenosti jsme se naučili přisuzovat jednotlivému jevu určitý druh příčiny, a pokud se pak setkáme s podobným jevem, tak samozřejmě a automaticky tomuto jevu přiřadíme podobnou příčinu. Tento názor vychází z našeho souboru zkušeností. Metoda analogie je zcela obecná a je užívána při rozpoznávání přirozených nebo inteligentních příčin.

Výzkum ETI. Existoval názor, že na Marsu jsou kanály. To vedlo k úvahám o existenci inteligentního života na této planetě. Ačkoliv byla tato myšlenka chybná, opět představuje způsob našeho uvažování: setkáme-li se s určitými druhy jevů, přisuzujeme jim v duchu principu analogie inteligentní původ.

Tento druh úvah využívali také astronomové při hledání inteligentního života ve vesmíru. Je běžně používán v týmech NASA určených pro vyhodnocování dat z planet a jejich měsíců. Při posuzování důkazů inteligentního života na planetách je rozhodujícím kritériem nalezení rysů charakteristických pro věci produkované inteligencí.

Současné hledání mimozemské inteligence (search for extraterrestrial intelligence = SETI) také dokumentuje přijatelnost inteligentních příčin ve vědě. Nelze vytvářet dojem, že ETI skutečně existuje, protože pro to chybí důkaz. Současný program SETI je však uskutečňován v rámci legitimní vědy.

Pokud někdy vědci zachytí radiové vlny z vesmíru, které byly vyslané ETI, jak je odliší od šumu? Tato otázka leží v podtextu sci-fi povídky Kontakt Carla Sagana. Sagan nás upozorňuje na to, že sice na naši planetu neustále dopadá množství radiových vln, ale všechny jsou přirozeného původu. Toto záření je "způsobeno fyzikálními procesy - spirálním pohybem elektronů v galaktickém magnetickém poli nebo vzájemnými srážkami molekul v mezihvězdném prostoru nebo vzdálenými ozvěnami rudého posuvu gamma paprsků, k němuž došlo při velkém třesku na počátku vesmíru - jejichž důsledkem je, že mírné a zchladlé radiové vlny v dnešní době naplňují celý vesmír." Dosud "se z hlubin vesmíru nevynořil žádný skutečný signál, cosi vytvořeného, něco umělého, něco vymyšleného cizím intelektem."80

Podobně jako v Saganově povídce sledují rozličné radioteleskopy pečlivě oblohu, aby zachytily nějaký umělý elektromagnetický signál, který by zjevně nebyl jen náhodným radiovým šumem. Např. signál představovaný sérií prvočísel by prozrazoval existenci vzdálené civilizace (prvočísla jsou čísla dělitelná pouze sama sebou a 1). Společenství vědců SETI považuje jakýkoliv přirozený mechanizmus generující prvočísla za tak nepravděpodobný, že jejich řada přicházející jako signál z vesmíru by byla přijata jako důkaz existence mimozemské civilizace.

Během doby bylo vytvořeno několik programů SETI, na jejichž počátku stál v roce 1960 projekt Ozma. Novější je projekt Sentinel, hlavní projekt Planetární společnosti.81 Jeho rozšířená verze nazvaná projekt META (Megachannel Extraterrestrial Assay) může prozkoumat více než osm miliónů radiových kanálů, není-li mezi nimi radiový signál z vesmíru.82 V roce 1992 odsouhlasil SETI americký kongres 100 miliónů dolarů na sledování radiových vln, na poslech miliónů radiových kanálů, aby bylo možné zachytit signály, které by ukázaly, že se během evoluce objevil inteligentní život i někde jinde ve vesmíru.83

Astronom Carl Sagan tvrdil, že jediná zpráva z vesmíru by potvrdila existenci mimozemské inteligence: "Jsou tací, kteří věří v řešitelnost našich problémů, v to, že lidstvo ještě prožívá své dětství a že brzy přijde den, kdy dospěje. Přijetí jediného poselství z vesmíru by ukázalo, že je možné přežít toto technologické dospívání; civilizace, která by vyslala zprávu, by je konec konců přežila."84

Jsou-li Saganovy předpoklady správné, co pak můžeme vyvozovat z velkého množství informací, které je vlastní i nejjednoduššímu živému systému? Je vhodné usuzovat z této skutečnosti na existenci inteligentní příčiny? Měla by ztráta věrohodnosti podobných argumentů založených v 18. století na teologii způsobit náš zájem o takové hypotézy? Touto kritickou otázkou, kdy (jestli vůbec) bude potvrzena správnost úvahy o inteligentní příčině pomocí vědeckých pozorování, se budeme dosti obšírně zabývat v následující části.

Pokud neexistuje jednoznačná zkušenost, nemáme jistotu ohledně toho, zda příčina určitého jevu byla přirozená nebo inteligentní. Pro ilustraci si představme, že jsme detektivové vyšetřující smrt člověka. Jednalo se o vraždu nebo o přirozenou smrt? Odpověď nemůžeme znát předem. Musíme vyšetřovat a nalézt. Kdyby detektiv na začátku svého vyšetřování prohlásil, že smrt mohla být pouze přirozená, protestovali bychom proti tomu tvrzením, že došlo k nelegitimnímu omezení možných příčin. Protože to, co bychom chtěli odhalit naším výzkumem, je přesně totéž, tedy zda smrt nastala v důsledku vlivu inteligence (vražda) nebo zda byla přirozená, potřebujeme metodu zkoumání, která připouští obě vysvětlení. Zrovna tak i ti, kteří se upřímně snaží objevit, zda událost v přírodě je výsledkem intelektu nebo přírodního procesu, potřebují metodu připouštějící obě vysvětlení. Potřebujeme metodu, která nám umožní rozhodnout s nejvyšší pravděpodobností mezi oběma variantami.


Yüklə 1,33 Mb.

Dostları ilə paylaş:
1   ...   9   10   11   12   13   14   15   16   17




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə