The complex world of polysaccharides edited by Desiree Nedra Karunaratne



Yüklə 27,58 Mb.
Pdf görüntüsü
səhifə9/276
tarix31.10.2018
ölçüsü27,58 Mb.
#77257
1   ...   5   6   7   8   9   10   11   12   ...   276

 

The Complex World of Polysaccharides 

 

14 


Chitosan details 

(DD, MW) 

Modification

Assessment

IC50 

 

95% DD, 18.7 kDa Steric acid conjugation 

micelle 

In vitro ,A549 cells 

369±27 μg/ml 

95% DD, 18.7 kDa teric acid conjugation and 

entrapment in micelle 

In vitro ,A549 cells 

234±9 μg/ml 

97% DD, 65 kDa  N-octyl-O-sulphate 

Invitro, primary rat 

hepatocytes 

>200 mg/ml 

87% DD, 20, 45, 

200, 460 kDa 

None, aspartic acid salt  In vitro, Caco-2 cells, 

pH 6.2 

0.67±0.24, 0.61±0.10, 



0.65±0.20, 0.72±0.16 

mg/ml 


87% DD, 20, 45, 

200, 460 kDa 

None, glutamic acid salt   

0.56±0.10, 0.48±0.07, 

0.35±0.06, 0.46±0.06 

mg/ml 


87% DD, 20, 45, 

200, 460 kDa 

None, Lactic acid salt 

 

0.38±0.13, 0.31±0.06, 



0.34±0.04, 0.37±0.08 

mg/ml 


87% DD, 20, 45, 

200, 460 kDa 

None, hydrochloride salt   

0.23±0.13, 0.22±0.06, 

0.27±0.08, 0.23±0.08 

mg/ml 


78% DD, <50 kDa  None, lactic acid salt 

In vitro B16F10 cells  2.50 mg/ml 

82% DD, 150–170 

kDa 


None, lactic acid salt 

In vitro B16F10 cells  2.00±0.18 mg/ml 

>80% DD, 60–90 

kDa 


None, glutamic acid salt  In vitro B16F10 cells  2.47±0.14 mg/ml 

77% DD, 180–230 

kDa 

None, lactic acid salt 



In vitro B16F10 cells  1.73±1.39 mg/ml 

85% DD, 60–90 

kDa 

None, hydrochloric acid 



salt 

In vitro B16F10 cells  2.24±0.16 mg/ml 

81% DD, 100–130 

kDa 


None, hydrochloric acid 

salt 


In vitro B16F10 cells  0.21±0.04 mg/ml 

100% DD, 152 kDa Glycol chitosan 

In vitro B16F10 cells  2.47±0.15 mg/ml 

100% DD, 3–6 kDa 20, 44, 55% Trimethyl 

chitosan, chloride salt 

In vitro, MCF7 and 

COS7 cells, 6 h & 24 h 

>10 mg/ml 

100% DD, 3–6 kDa 94% Trimethyl chitosan, 

chloride salt 

In vitro, MCF7, 6 h 

1.402±0.210 mg/ml 

100% DD, 3–6 kDa 94% Trimethyl chitosan, 

chloride salt 

In vitro, COS7, 6 h 

2.207±0.381 mg/ml 

100% DD, 100 kDa 36% Trimethyl chitosan, 

chloride sal 

In vitro, MCF7, 6 h 

 0.823±0.324 mg/ml 

100% DD, 100 kDa 36% Trimethyl chitosan, 

chloride sal 

In vitro, COS7, 6 h 

>10 mg/ml 




 

Is Chitosan a New Panacea? Areas of Application 

 

15 


Chitosan details 

(DD, MW) 

Modification

Assessment

IC50 

 

84.7% DD, 400, 

100, 50, 25, 5 kDa 

40% Trimethyl chitosan  In vitro, L929 cells, 3 h 30, 70, 90, 270, >1000 

μg/ml 

84.7% DD, 1.89 



MDa 

12% PEG modified 40% 

trimethyl chitosan 

In vitro, L929 cells, 3 h 220 μg/ml 

84.7% DD, 3.6 

MDa 


25.7% PEG modified 40% 

trimethyl chitosan 

In vitro, L929 cells, 3 h 370 μg/ml 

84.7% DD, 300 

kDa 

6.44% PEG modified 40% 



trimethyl chitosan (and 

all PEG modified TMC 

with lower Mw) 

In vitro, L929 cells, 3 h >500 μg/ml 

97% DD, 65 kDa  N-octyl-O-sulphate 

In vivo, IV, mice 

102.59 mg/kg 

97% DD, 65 kDa  N-octyl-O-sulphate 

n vivo, IP, mice 

130.53 mg/kg 



Table 1.

 Toxicity of chitosan and chitosan derivatives 

Table taken from [94] 

In a series of articles are described the effects of chitosans with differing molecular weights 

and degree of deacetylation in vitro and in vivo. Toxicity was found to be degree of 

deacetylation and molecular weight dependent. At high DD the toxicity is related to the 

molecular weight and the concentration, at lower DD toxicity is less pronounced and less 

related to the molecular weight [93]. 

A summary of toxicities of chitosan and derivatives assessed through IC

50

 values is 



presented in the next table [94]. 

From this table it can be gathered that most chitosans (and derivatives) are not significantly 

toxic compared to a toxic polymer such as polyethylenimine [94]. 

It appears that the toxicity of chitosan is related to the charge density of the molecule, 

toxicity increases with increasing density. It appears that there is a threshold level below 

which there are too few contact points between a molecule and the cell components to 

produce a significantly toxic effect. This balance is between 40 and 60% DD, or degree of 

trimethylation, although any sufficiently small chitosan (<10 kDa) is not appreciably toxic. 

Modifications that do not increase the charge on the molecule seem to have little effect on 

the toxicity beyond that of the native molecule [94].  



17. Antimicrobial activity 

The exact mechanism by which chitosan exerts its antimicrobial activity is currently 

unknown, it has been suggested that the polycationic nature of this biopolymer that forms 

from acidic solutions below pH 6.5 is a crucial factor. Thus, it has been proposed that the 

positively charged amino groups of the glucosamine units interact with negatively charged 

components in microbial cell membranes, altering their barrier properties, and thereby 




Yüklə 27,58 Mb.

Dostları ilə paylaş:
1   ...   5   6   7   8   9   10   11   12   ...   276




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə