Sudan University of Science and Technology College of Graduate Studies Department of Electrical Engineering


Renewable energy for rural Development



Yüklə 0,62 Mb.
Pdf görüntüsü
səhifə9/25
tarix11.12.2023
ölçüsü0,62 Mb.
#146508
1   ...   5   6   7   8   9   10   11   12   ...   25
Dual Axis Sun...

Renewable energy for rural Development: 
Given that the need for power grows much faster for less developed nations than 
for those that are already industrialized, this changing energy panorama will 
significantly impact how power is supplied to developing regions. Industrialized 


16 
countries need to clean up their own energy production acts, while encouraging 
developing countries not to follow in their footsteps, but rather to leapfrog to 
clean energy technologies directly. Despite three decades of major investments 
by less developed nations and multilaterals on electrification projects (often at 
huge environmental and social costs), nearly 2 billion people in developing 
regions around the globe still lack electricity. Over 1 billion people are also 
without access to safe drinking water. Millions of households rely solely on 
kerosene lamps for lighting and disposable batteries for radios. For most of these 
people, there is little likelihood of ever receiving electricity from conventional 
grid sources. However, there is growing momentum in supplying electricity to 
developing regions using solar and wind energy sources. Both solar and wind 
energy technologies offer energy independence and sustainable development by 
using indigenous renewable energy resources and by creating long-term local 
jobs and industries. The cost of bringing utility power via transmission and 
distribution lines to non-electrified villages is great. This is largely due to small 
household electrical loads and the fact that many villages are located at great 
distances over difficult terrain from the existing grid. Stand-alone solar and wind 
energy systems can provide cost-effective, modest levels of power for lighting, 
communication, fans, refrigerators, water pumping, etc. Using a least-cost 
model, some governments and national utilities, such as those in Brazil, India, 
Central America, South Africa, Mexico and elsewhere, have used PV and wind 
systems as an integrated development tool for electrification planning as either 
centralized or distributed solutions. Two decades ago, PV technology was 
relatively unknown. The Dominican Republic was one of the early proving 
grounds for developing rural PV electrification efforts. The nonprofit group 
Enersol Associates began work in 1984, offering technical assistance and 
training to Dominican businesses. Nonprofit organizations also worked to 
develop a market for rural PV technology. Enersol began to work closely with 


17 
the Peace Corps using seed funding from the U.S. Agency for International 
Development (USAID) to help set up a revolving fund offering rural farmers 
low-interest loans to purchase small PV systems. The work of this 
nongovernment organization (NGO) later evolved into private enterprise as 
companies such as Soluz formed in the Dominican Republic and Honduras. 
Gradually throughout the developing world, small solar companies began to 
form as PV module manufacturers began to establish distributor networks to 
serve remote, non-electrified areas. The model of rural off-grid PV systems 
(Figure 1.1) has spread globally with over 5 million systems installed. More total 
kilowatts of grid-tie PV systems are installed each year; however, numerically 
more small, off-gird systems are installed annually. Over time, the focus of PV 
projects has changed. Installation of PV systems solely for remote sites has 
expanded to include the promotion of rural economic development through PV. 
PV provide power for remote water pumping, refrigeration, and water treatment 
of community water supplies. Solar distillation can meet individual household 
potable water needs from even the most contaminated and brackish water 
sources. For larger load requirements, the combination of PV and wind 
technologies with diesel generators and battery storage has proved that hybrid 
configurations provide higher system reliability at a more reasonable cost than 
with any one technology alone. Solar thermal energy represents the most 
competitive but often overlooked solar technology option. Domestic solar hot 
water heating systems typically have cost paybacks from 5 to 7 years— much 
better than grid-tied PV systems, where payback may take decades, if ever. 
Additionally, large-scale solar thermal concentrating solar power (CSP) plants 
have better economies of scale than PV for utility power generation at almost 
half the kilowatt-hour cost. 


18 

Yüklə 0,62 Mb.

Dostları ilə paylaş:
1   ...   5   6   7   8   9   10   11   12   ...   25




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə