Guidance Manua pdf


  CASE STUDY #3 – TREATING MIB IN SQUAW PEAK WTP INFLUENT WATER



Yüklə 0,58 Mb.
Pdf görüntüsü
səhifə24/24
tarix25.05.2018
ölçüsü0,58 Mb.
#45844
1   ...   16   17   18   19   20   21   22   23   24

 

60

7.4  CASE STUDY #3 – TREATING MIB IN SQUAW PEAK WTP INFLUENT WATER 

 

7.4.1  Process Control Monitoring 

By late July 2001 MIB concentrations entering Squaw Peak WTP were approaching 30 

ng/L (Figure 7-5).  During July 2001 no PAC was added. 

MIB in the Squaw Peak WTP

0

10



20

30

40



50

60

70



80

8/1


8/16

8/30


9/13

9/27


10/18

11/2


11/15

MIB, ng/L

Inlet


Outlet

 

Figure 7-5.  MIB in raw (SP-IN) and finished (SP-OUT) water at the Squaw Peak WTP 



 

7.4.2  Diagnosis 

Options to minimize MIB production in the upstream canal were being implemented.  

However, elevated MIB levels (> 30 ng/L) still entered the WTP.  It was determined that 

in-plant MIB control was required. 

 

7.4.3  Treatment Selection 

Squaw Peak WTP had no documented in-plant production of MIB, therefore chlorine or 

copper addition in the WTP would not be effective at reducing MIB levels.  Squaw Peak 

WTP does not have ozone or chlorine dioxide feed capabilities.  Since the WTP feeds 

chlorine prior to filtration, biological filtration was not an option.  This left powdered 

activated carbon (PAC) addition as the only means of MIB treatment.   

 

7.4.4  Treatment Application 

Squaw Peak WTP had residual Norit HDB PAC in slurry storage tanks and used that 

supply up  by the end of July.  Norit 20B was ordered; this PAC was deemed more 



 

61

effective at removing MIB from the local water source based upon laboratory 



performance comparisons.  However, Norit HDB was delivered and had to be used 

during early September.  PAC ran  out around September 20, 2001, and no MIB removal 

was achieved.  It is important to monitor PAC supplies and coordinate new deliveries 

accordingly.  Once Norit 20B was delivered the PAC dose was calculated based upon 

laboratory dose-removal nomographs (Figure 5-10) verified the prior year at Val Vista 

WTP in full-scale tests.  The following equation can be used for PAC dose calculation: 

 

 

C/C



0

 = 0.95 x EXP (-0.18 x PAC_Dose) 

Equation 7.1 

 

OR 



 

Equation 7.2 

 

An example Norit B PAC dose calculation for September 12, 2001, to achieve 10 ng/L 



of MIB in finished water (C) when a MIB concentration of 55 ng/L was present in the raw 

water (C


0

)

 



follows: 

 

C = 10 ng/L 



C

0

 = 55 ng/L 



 

PAC Dose (mg/L) = - [ ln(0.95 *10/55) ] / 0.079 = 22 mg/L 

 

The WTP was operating near capacity (120 MGD) and detention time in the 



presedimentation basins where the PAC was added was only one hour.  However, the 

nomographs were developed based upon a three-hour contact time.  Revised 

nomographs for shorter contact times were required to determine PAC doses. 

 

7.4.5  Follow-up Monitoring 

PAC (8 to 16 mg/L doses) removed MIB, but not to below 10 ng/L (Figure 7-5).  PAC 

doses of greater than 16 mg/L were necessary to achieve 10 ng/L MIB in the finished 

water, but the PAC feed facilities were not rated for a feed rate this high.  

Recommendation: improve and increase capacity of PAC feed system. 

 

Once, after November 2001, Norit 20B was used and detention times in the 



presedimentation basins were above 1.25 hours the observed and predicted MIB 

removal was adequate and the target of 10 ng/L of MIB in finished water was achieved.  

The experience suggested that slight refinements in PAC dose-removal nomographs 

may be necessary to account for varying hydraulic retention times, and that scheduling 

delivery of PAC was critical. 





















=

079


.

0

*



95

.

0



ln

_

0



C

C

Dose

PAC


 

62

REFERENCES 

 

 

American Public Health Association, American Water Works Association and Water 



Environment Federation. (1999) Standard Methods for the Examination of Water and 

Wastewater. 20

th

 Edition. 



 

Baker, L., Westerhoff, P., Sommerfeld, M., Bruce, D., Dempster, T., Qiang, H. and 

Lowry, D. (2000) Multiple barrier approach for controlling taste and odor in Phoenix's 

water supply system, Water Quality Technology Conference, Salt Lake City, Utah, 

November, 2000. 

 

Baker, L. A., Westerhoff, P. and Sommerfeld, M. (1999) Multibarrier concept for taste 



and odor control, North American Lake Management Society Conference, Reno, 

Nevada, Dec. 1-4, 1999. 

 

Bruce, D., Westerhoff, P., Sommerfeld, M., Baker, L., Nguyen, M. L., Lowry, D., 



Dempster, T. and Hu, Q. (2000) Occurrence of MIB and geosmin in Arizona drinking 

waters, Arizona Water Pollution Control Association Conference, May 4-5, 2000. 

 

Lloyd, S. W., Lea, J. M., Zimba, P. V., and Grimm, C. C. (1998) Rapid analysis of 



geosmin and  2-methylisoborneol in water using solid phase micro extraction 

procedures.  Wat. Res. 37(7):2140-2146. 

 

Means, E. G. and McGuire, M. J. (1986) An early warning system for taste and odor 



control. Journal AWWA: March, 1986, 77-83. 

 

Nguyen, M. L. (2002)  Sources and characteristics of dissolved organic carbon in arid 



region water supplies, Ph.D. Dissertation, Civil and Environmental Engineering, Tempe, 

Arizona State University, . 

 

Nguyen, M. L., Baker, L. A. and Westerhoff, P. (2002) Sources of DOC and DBP 



precursors in western U.S. watersheds and reservoirs.  J. Am. Water Works Assoc. 

94(5):98-112. 

 

Suffet, I. H., Khiari, D. and Bruchet, A. (1999) The drinking water taste and odor wheel 



for the millenium: beyond geosmin and 2-methylisoborneol.  Wat. Sci. Tech. 40(6):1-13. 

 

Taylor, W. D., Losee, R. F., Isaguirre, G., Crocker, D. J., Otsuka, D. J., Whitney, R. D., 



Kemp, J. and Faulconer, G. (1994) Application of limnological principles for 

management of taste and odor in drinking water reservoirs: a case study, Water Quality 

Technology Conference, San Francisco, CA, Nov. 6-10, 1994. 

 

Watson, S. B., Brownlee, B., Satchwill, T., and Hargesheimer, E. E. (2000) Quantitative 



Analysis of trace levels of geosmin and MIB in source and drinking water using 

headspace SPME.  Wat. Res. 34(10): 2818-2828. 




 

63

APPENDIX A 



SAMPLE DATA SHEETS FOR LAKE, CANAL AND WTP SAMPLES

 

 

 

Taste and Odor Project – Lake Sampling                                                         

 

Site #:  ____________       Location: _________   Date: __________Time: ________ 



 

Personnel: __________Weather: ____________________________   Elevation: ___  

 

Description of water: 

Description: ______________________________________     Water Depth ____________ m 

(circle):   Turbid       clear 

green      blue-green     brown       yellow-brown 

white floc     

white foam 

 

Secchi Disk Reading 1 __ m  Secchi Disk Reading 2 __m    Average Reading ___m 



 

 

Field measurements: 

 

Depth (m) 

T (

o

C - D.O.)



 

D.O. (mg/L)

 

pH

 



sample (yes/no)

 

comments 



 

 



 

 

 



 

 



 

 

 



10 

 

 



 

 

 



15 

 

 



 

 

 



20 

 

 



 

 

 



25 

 

 



 

 

 



30 

 

 



 

 

 



35 

 

 



 

 

 



40 

 

 



 

 

 



45 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 




 

64

 



 

Description of phytoplankton (free-floating): 

____________________________________________________________________________ 

Color (circle):     Green     Brown 

yellow-brown     Blue-green     Pink     Other: 

____________________ 

 

Visible clumps: yes no  



 

Comments: ________________________________ 



Water Odor Characteristics: 

Odor in epilimnion composite water sample: 

Odor strength (circle one):       Strong          Medium          Weak           Absent         

Odor (circle):     musty    earthy    moldy     fishy      sulfidic     grassy     chlorine     Other  

Comments: 

______________________________________________________________________ 

 

Odor in hypolimnion composite water sample:  



Odor strength (circle one):       Strong          Medium          Weak           Absent         

Odor (circle):     musty    earthy    moldy     fishy      sulfidic     grassy     chlorine     Other  

Comments: 

______________________________________________________________________ 

 

Samples collected: 

 

Comments: 



____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________ 




 

65

Taste and Odor Project – Canal Sampling                                                         

 

Site #:  Specify Site ID     Location:   Specify location       Date: ____________Time: ________ 



 

Personnel: ____________Weather: ___________________________           Elevation: _____  

 

Description of water: 

Description: 

____________________________________________________________________________ 

(circle):   Turbid       clear 

green      blue-green     brown       yellow-brown 

white floc     

white foam 

 

Description of phytoplankton (free-floating): 

Description: _______________________________________________________________  

Color (circle):     Green     Brown/yellow-brown     Blue-green     Pink     Other:  

Visible clumps: yes no Comments: _______________________________ 

 

Description of periphyton (attached to canal walls): 

Description: 

______________________________________________________________________ 

 

Depth less than 15 cm: 



Approximate thickness of mat: _____ cm Comments: ________________________ 

 

Color of mat (circle):   Green     Blue-green     Brown or goldish-brown     Black     Other: 



________________ 

 

Depth 15 – 30 cm: 



Approximate thickness of mat: __________ cm  Comments: __________________ 

Color of mat (circle):   Green     Blue-green     Brown or goldish-brown     Black     Other: 

________________ 

 

Depth greater than 30 cm: 



Approximate thickness of mat: ______ cm  Comments: ______________________ 

 

Color of mat (circle):   Green     Blue-green     Brown or goldish-brown     Black     Other: 



________________ 

 

Field measurements: 

Temp (

  o


C - DO): ______  D.O. (mg/L): ______ Temp (

  o


C - pH meter): ________  pH: ______ 

 

Odor in water sample: 

Odor strength (circle one):       Strong          Medium          Weak           Absent         

Odor (circle):     musty    earthy    moldy     fishy      sulfidic     grassy     chlorine     Other  

 



 

66

Samples collected: 

 

Used scraping device? (yes or no) _________       # of scrapes (2 if possible) _____________ 



 

Comments: 

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________ 

 



 

67

APPENDIX B 



DESIGN AND OPERATION OF PERIPHYTON SAMPLER

 

 



A periphyton sampler was designed for this project.  The  periphyton sampler is a 

rectangular chamber, measuring 25 cm long, 18 cm wide and 18 cm high.  The upper 

part of the chamber is made of a clear PVC plate, whereas the bottom is a metal plate 

with a 10 x 15 cm open area (0.015 m

2

).  The side of the chamber facing the canal bank 



is a small slot through which a wire pool brush inside the chamber is attached to a 

telescoping pole.  The upstream side of the chamber has a large opening that is 

covered by a fine plastic screen that allows water to flow through the chamber.  The 

downstream side of the chamber is a large circular opening with an attached plankton 

net (80 um mesh).  Two people are required to collect samples.  The sampler is placed 

on the canal wall and held into position with the telescoping pole by  one person.  A 

second individual brushes the wall a predetermined number of times.  As periphyton 

mats are removed from the canal wall, they are carried by water flow into the plankton 

net.  Because vertical zonation of periphyton is evident on canal walls, sampling is done 

at three depths (just below the surface and at 30 cm intervals.  The three samples are 

composited and stored in a sterile whirl-pak bag at 4

C until laboratory analysis. 



 

Diagram of the periphyton sampler. Sampler consists of A, a rectangular chamber with an open window 

(10 x 15 cm) on the bottom plate; B, a plankton net; C, a plastic screen with metal frame (D); E, two 

telescoping poles; and F, a wire pool brush. 

 

 

 



 

 

     



 

 

 



 

 

 



 

 








 

68

APPENDIX C 



SPME METHOD FOR MEASURING MIB AND GEOSMIN

 

 



Twelve (12) ml of sample is added to a 25 ml septum capped vial that contains 4 g 

desiccated sodium chloride. An internal standard (10 ng/L IPMP, Sulpelco #47527 U) is 

added through the septum and the vial is placed in a heat block 50 

±

 1.5 



C.  A SPME 

fiber (Supelco # 57348 U) is introduced into the head space through the septum and the 

sample is shaken for 30 minutes. The fiber is removed from the vial and inserted into 

the gas chromatograph injector at 250 

C for 5 minutes. The fiber is then retracted into 



the holder, removed from the GC inlet and reused for the next sample.  Compounds 

from the fiber are desorbed in the column gas chromatograph (MDN-5 capillary column; 

Supelco, Pennsylvania) and eluted into a mass spectrometer set for selective ion 

monitoring (selective  m/z values:  MIB = 95, geosmin = 112 and IPMP = 124, 136). 

Calibration curves are generated using MIB and geosmin standards (mixture standard: 

Supelco # 47525 U).  Analysis of MIB and geosmin was performed on a Varian Star 

3400 CX gas chromatograph and mass spectrometer (GC/MS).  (QA/QC analysis of 

MIB measurements by the City of Phoenix and ASU labs has shown a nearly 1:1 

correlation (actual slope was 0.95), and a statistical R

2

 value of 0.72 for approximately 



150 samples since inception of the project.)  The method detection limit (MDL) for MIB 

and geosmin is ca. 1ng/L ng/L.  




 

69

APPENDIX D 



TEST PROTOCOL FOR EVALUATING 

PAC MIB ADSORPTION CAPACITY 

 

A PAC slurry should be prepared by adding 1000 mg of PAC to 1 liter of 0.45 



µ

m filtered 

water  and allowed to hydrate overnight while being mixed with a magnetic stir.  Filter 

approximately 2 liters of raw water and spike with MIB and geosmin to give a 

representative concentration (e.g., 30 ng/L).  Fill amber glass bottles (no headspace; 

250 mL) with this water sample.  The hydrated PAC slurry will have a PAC 

concentration of 1 mg/ml.  Select representative PAC doses for the performance-based 

experiments (e.g., 15 mg/L).  Calculate the volume of PAC slurry (V

PAC

) required for 



addition to the 250mL sample (e.g., a PAC dose of 15 mg/L would equate to 3.75 mL of 

PAC slurry); remove and add V

PAC

 of the PAC slurry to the 250 mL amber bottle.  Using 



a magnetic stir or wrist-shaker, rapidly agitate the bottle containing the water sample 

and PAC for a desired period representative of average HRT of the presedimentation 

basins (e.g., 1 to 4 hours).  Immediately after the prescribed agitation period use a 

syringe-filter (0.2 

µ

m) and filter the water sample/PAC mixture.  Collect the filtrate in a 



100 mL amber vial (no headspace).  Conduct MIB and geosmin analysis on the filtrate.  

Repeat for each PAC brand, and repeat for a blank (no PAC added).  Calculate the 

fraction of MIB remaining: C/C

o

 where C



o

 is the MIB or geosmin concentration in the 

blank and C is the concentration after contact with the PAC.  Compute the Index Value 

based upon the fraction of MIB remaining (C/C

o

) and the unit cost of the PAC (e.g., 



$/lb): 

 

Index Value = [C/C



o

] x [PAC unit Cost] 

 

 

Equation D.1 



 

The PAC brand with the lowest Index Value is the most cost-effective.  This assumes 

that there are no limitations to PAC feed rates.  For example, to achieve a desired MIB 

removal, one PAC brand may require 40 mg/L of PAC while a more expensive PAC 

brand may only require 30 mg/L of PAC feed.  Therefore, the actual fraction removed 

(C/C


o

) should be examined.  High PAC feed rates can increase the frequency of PAC 



shipments, sludge production, handling costs and maintenance on equipment, etc. 

 

Yüklə 0,58 Mb.

Dostları ilə paylaş:
1   ...   16   17   18   19   20   21   22   23   24




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə