Bulletin of geography. Socio–economic series



Yüklə 2,63 Mb.
Pdf görüntüsü
səhifə3/7
tarix18.07.2018
ölçüsü2,63 Mb.
#56193
1   2   3   4   5   6   7

W. Zhang, B. Derudder, J. Wang, F. Witlox / Bulletin of Geography. Socio-economic Series / 31 (2016): 145–160

149


and time) can also be used as an indicator of mea-

suring the possibility of inter-city journeys (see for 

example, Wang et al., 2009; Spence, Linneker, 1994). 

A major obstacle to using this proxy of interaction 

potential is that infrastructures merely enable the 

‘potential’ of inter-city interactions; actual passenger 

volumes are co-determined by the ‘demand’ for 

inter-city interactions and this ‘supply’ of transport 

infrastructures. The ‘demand’ for inter-city travel 

can be attributed to the socio-economic attributes 

of cities and the distance between cities (Davies, 

1979; Krings et al., 2009). Even having convenient 

and efficient transport infrastructures linking to 

each other does not guarantee that two (social or 

economic) proximate cities will also exchange a lot 

of passengers.

A related approach for assessing the potential 

is using a range of combined measures that not 

only reflect the quality of infrastructure networks, 

but also the demand for inter-city linkages. For in-

stance, the indicator of weighted travel time sug-

gested by Gutiérrez (1996; 2001) consists of travel 

times and urban mass which refers to, for example, 

gross domestic product or population. However, the 

‘demand’ for inter-city linkages is using simulation 

approaches rather than more direct measures. Taken 

together, these indices expressing the potential of 

inter-city interaction by train mirror the quality or 

efficiency of train transport infrastructures itself.

2.2.  A proxy based on infrastructure volumes

The number of daily or weekly trains has been used 

as a proxy (Derudder et al., 2014; Hall et al., 2006). 

Using this proxy instead of the measurements 

outlined in the previous section has two advantages. 

As the volume of carriages contains more direct 

information of inter-city flows, it seems to be a more 

suitable measure of passenger flows. In addition, the 

information on train numbers can be collected via 

open information platforms of transport companies 

much easier than through other ways such as 

surveys. This proxy also can be viewed as the as-

sessment of transport infrastructures per se, which 

indicates the traffic supply of infrastructure net-

works at the level of carriages.

Using the volume of carriages assumes that 

every train holds similar passenger volumes, which 

is of course is problematic. More importantly, this 

proxy also assumes that the number of trains is 

proportional to the volume of inter-city passengers 

between any pair of cities. This is problematic 

assumption because operationally, train networks 

are organized by chain structures, unlike air travel 

or bus trips where direct non-stop services are 

main organizational forms. A link from an origin 

to a destination produces n(n-1)/2n(n-1)/2   links 

between any pair of stations if there are n stations 

en route. In this case, the most important cities hold 

similar positions with smaller cities that can be found 

on same railway line, although this obviously does 

not conform to the actual distribution of inter-city 

flows of passengers. As a corollary, the volumes of 

passengers of ‘major cities’ tend to be underestimat-

ed, while the roles of ‘small cities’ located on major 

traffic arteries tend to be overstated. Consequently, 

this proxy structurally predetermines a flatter 

structure in the urban hierarchy than warranted.

3.  An alternative approach 

to approximating passenger flows 

in railway networks

3.1.  Dwell time

Dwell time, the time a train remains in a given 

station, is primarily determined by the number of 

boarding and alighting passengers, as well as some 

extra factors such as passenger behavior, platform 

and vehicle characteristics, and dispatching rules 

(Lin, Wilson, 1992; Wiggenraad, 2001; Jong, Chang, 

2011). It is a key parameter of the capacity and 

performance of operation of trains as insufficient 

dwell time would lead to train delays, while exces-

sive dwell time would result in inefficient operations 

(Jong, Chang, 2011). Dwell time, therefore, is set by 

scientific and efficient principles, which mainly fol-

low the experience of the length of boarding and 

alighting processes from the past. A normal dwell 

time lasts between 2 and 5 minutes, with a dwell 

time of over 5 minutes often implying extraordinary 

dispatching such as coupling, decoupling, and 

meeting occurs in that station.

These underlying principles suggest that there is 

a potential for modelling passenger flows based on 

the corresponding dwell time in a certain station. 

 - 10.1515/bog-2016-0010

Downloaded from De Gruyter Online at 09/23/2016 11:26:34AM

via Universiteit Antwerpen



W. Zhang, B. Derudder, J. Wang, F. Witlox  / Bulletin of Geography. Socio-economic Series / 31 (2016): 145–160

150


However, eliminating the influence of extraordinary 

dispatching rules on dwell time is needed: special 

dispatching (e.g. overtaking, meeting, insufficient 

headway) clearly biases the interpretation of dwell 

times, and thus represent outliers. In our research, 

we will adopt the strategy of replacing outliers with 

mean values. This is mainly based upon two con-

siderations: (i) simply deleting outliers would be 

equal to suggesting that trains did not stop in these 

stations, which is obviously unreasonable; and (ii) 

as the cause of producing outliers is known in our 

case, it is possible to replace these outliers using 

reasonable values to eliminate the effect of abnor-

mal dispatching.

After dealing with outliers, the adjusted dwell 

times thus correspond with the time of boarding 

and alighting. According to Jong and Chang’s re-

search (2011), the linear relation between the time 

of passenger flows and the volume of passenger 

flows is statistically significant. We thus introduce 

a dummy parameter ‘r’, which refers to the correla-

tion coefficient between passenger volumes and the 

boarding and alighting time, to simulate the vol-

ume of passenger flows. That is, the volume of pas-

senger flows ‘v’ is dependent on its adjusted dwell 

time ‘t’, so that:

 

v = t × r 



(1)

The stations of origin and destination do not 

have dwell times, albeit that they are often the main 

sources of passengers. To this end, we impose an as-

signed value by setting a relatively reliable boarding 

and alighting time in starting and terminal stations 

for empirical regions. In our case, the HSR net-

work within the Yangtze River Delta region, most 

maximal dwell times (after replacing outliers) are 

around 5 minutes . We posit that the passenger vol-

ume from original or to terminal station resemble 

(or slight exceed) the passenger volume in the larg-

est transit station as a general rule. Thus, we assign 

the dummy dwell time as 3 minutes.



3.2.  Approximating passenger flows 

between city-pairs

As our object of research is cities rather than train 

stations, we combine multiple stations into one city 

through summing adjusted dwell times in the case 

of there being multiple stations in a single city. 

From an operational perspective, the distribution 

of passenger flows for a given train that passes ‘n’ 

cities can be summarized by means of an upper tri-

angular matrix as shown in table 1, where ‘v

ij

’ is the 



number of passengers boarding in city ‘i’ and alight-

ing in city ‘j’. In table 1, each row indicates the dis-

tribution of alighting for passengers boarding in city 

‘i’; each column indicates the distribution of board-

ing for passengers alighting in city ‘j’. As a conse-

quence, the sum of each row (V

ix

) is the number of 



boarding passengers in city ‘i’, and the sum of each 

column (V

xj

) is the number of alighting passengers 



in city ‘j’.

Table 1. The distribution of passenger flows for a certain train

Alighting city 

Boarding city

City 

1

City 

2



City 





City 

(n-1)

City

 n

City 


1

0

v



1,2

v



1,j

v



1,n-1

v

1,n



City 

2

0



0

v



2,j

v



2,n-1

v

2,n







City 



i

0

0



v

i,j



v

i,n-1



v

i,n






City 



(n-1)

0

0



0



0

v

n-1,n



City 

n

0



0

0



0

0



Source: Own studies

Following equation (1), passenger volumes in 

city ‘i’ and ‘j’ can be obtained by:

 v

ix 



+ v

xi 


= v

= t



× r 


(2)

 v

jx 



+ v

xj 


= v

= t



j

×r (3)


 - 10.1515/bog-2016-0010

Downloaded from De Gruyter Online at 09/23/2016 11:26:34AM

via Universiteit Antwerpen



Yüklə 2,63 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə