Atmos. Chem. Phys., 17, 10709-10732, 2017



Yüklə 451,19 Kb.
Pdf görüntüsü
səhifə13/14
tarix01.02.2018
ölçüsü451,19 Kb.
#23367
1   ...   6   7   8   9   10   11   12   13   14

10728

F. Prata et al.: Separation of ash and SO

2

at Grímsvötn is likely to have contributed water vapour in



addition to that derived from magma. The sensitivity of the

model predictions to the source water mass fraction is exam-

ined in Fig. A2 in which the water vapour content is taken to

be 5, 10, and 15 wt %. Adding water at the source has a pro-

nounced effect on the condensed water content of the plume,

with both the mass fractions of the condensed phases increas-

ing and the level at which condensation occurs decreasing as

the source mass fraction of water vapour increases. When the

source is relatively dry, with n

0

=



0.05, condensation occurs

when the plume temperature is below 0

C, so that liquid wa-



ter and ice are expected to form. In contrast, for both n

0

=



0.1

and n


0

=

0.15 the condensation occurs when the plume tem-



perature exceeds 0

C, and therefore the vapour first con-



denses to water, with ice forming at higher altitudes as the

temperature decreases. We note that the source mass frac-

tion of water vapour strongly influences the buoyancy of the

erupted material at the source; for n

0

=

0.05 and n



0

=

0.1 the



erupted material is initially more dense than the atmosphere

and is driven upwards by momentum, whereas the material

is buoyant at the vent when n

0

=



0.15. Interestingly, the ve-

locity at the source when n

0

=

0.15 is greater than that when



n

0

=



0.1. However, the dependence of the fallout velocity on

the plume density means that the fallout height for each par-

ticle size decreases substantially as n

0

increases.



Figure A2 demonstrates that the potential for the separa-

tion of very fine ash from the plume, driven by wet aggrega-

tion, increases substantially as the source water vapour con-

tent increases. However, for the atmospheric conditions at the

time of the Grímsvötn eruption, the model predicts substan-

tial concentrations of condensed water for all of the source

conditions examined. Therefore, our hypothesis of water-

mediated aggregation and enhanced removal of ash from the

plume is robust to changes in the source conditions.

Figure A2. Sensitivity of model predictions of the Grímsvötn plume

at 05:00 UT on 22 May 2011 to increases in the source water vapour

content, with (a–d) n

0

=

0.05, (e–h) n



0

=

0.10, and (i–l) n



0

=

0.15.



(a, e, i) Plume width as a function of height. (b, f, j) Mass fraction

of liquid water and water ice as a function of height. (c, g, k) Den-

sity of the plume ρ

p

and atmosphere ρ



A

as functions of height. (d,

h, l) Vertical velocity of the plume at the plume edge and critical

fallout velocities of 50 µm, 100 µm, 500 µm, and 1 mm particles as

functions of height.

Atmos. Chem. Phys., 17, 10709–10732, 2017

www.atmos-chem-phys.net/17/10709/2017/



F. Prata et al.: Separation of ash and SO

2

10729



The Supplement related to this article is available

online at https://doi.org/10.5194/acp-17-10709-2017-

supplement.

Competing interests.

The authors declare that they have no conflict

of interest.

Acknowledgements.

Andrew Hogg and Jeremy Philips provided

advice on part of this work and we thank them for their valuable

insights. We also thank Antonio Costa and Arnau Folch for

providing us with the code to run the FALL3D model and the

NASA AIRS and MODIS science teams for access to the satellite

data and products. We acknowledge the use of data products or

imagery from the Land, Atmosphere Near real-time Capability for

EOS (LANCE) system operated by the NASA/GSFC/Earth Science

Data and Information System (ESDIS) with funding provided

by NASA/HQ. This work was conducted within the European

Commission FUTUREVOLC project. The work of HEH is partially

supported by a Leverhulme Emeritus Fellowship. Simon Carn

acknowledges support from NASA through grants NNX11AF42G

(Aura Science Team) and NNX13AF50G (MEaSUREs). We thank

Arnau Folch and John Stevenson for their reviews of our paper.

We are especially grateful to John Stevenson for providing such

thorough and thought-provoking comments. His comments have

helped us improve the paper.

Edited by: Anja Schmidt

Reviewed by: Arnau Folch and John Stevenson

References

Ansmann, A., Seifert, P., Tesche, M., and Wandinger, U.: Pro-

filing of fine and coarse particle mass: case studies of Saha-

ran dust and Eyjafjallajökull/Grimsvötn volcanic plumes, At-

mos. Chem. Phys., 12, 9399–9415, https://doi.org/10.5194/acp-

12-9399-2012, 2012.

Arason, P., Petersen, G. N., and Bjornsson, H.: Observations of

the altitude of the volcanic plume during the eruption of Ey-

jafjallajökull, April–May 2010, Earth Syst. Sci. Data, 3, 9–17,

https://doi.org/10.5194/essd-3-9-2011, 2011.

Bourassa, A. E., Robock, A., Randel, W. J., Deshler, T., Rieger,

L. A., Lloyd, N. D., Llewellyn, E. T., and Degenstein, D. A.:

Large volcanic aerosol load in the stratosphere linked to Asian

monsoon transport, Science, 337, 78–81, 2012.

Brown, R., Bonadonna, C., and Durant, A.: A review of vol-

canic ash aggregation, Phys. Chem. Earth, 45–46, 65–78,

https://doi.org/10.1016/j.pce.2011.11.001, 2012.

Bursik,

M.:


Tephra

dispersal,

Geological

Soci-


ety,

London,


Special

Publications,

145,

115–144,


https://doi.org/10.1144/GSL.SP.1996.145.01.07, 1998.

Bursik, M.: Effect of wind on the rise height of volcanic plumes,

Geophys. Res. Lett., 28, 3621–3624, 2001.

Carey, S. and Bursik, M.: Volcanic plumes, Encyclopedia of volca-

noes. Academic Press, San Diego, 572–585, 2015.

Carn, S., Strow, L., de Souza-Machado, S., Edmonds, Y., and Han-

non, S.: Quantifying tropospheric volcanic emissions with AIRS:

The 2002 eruption of Mt. Etna (Italy), Geophys. Res. Lett., 32, 2

https://doi.org/10.1029/2004GL021034, 2005.

Carn, S., Clarisse, L., and Prata, A.: Multi-decadal satellite mea-

surements of global volcanic degassing, J. Volcanol. Geoth. Res.,

311, 99–134, 2016.

Clarisse, L. and Prata, F.: Infrared sounding of volcanic ash, in: Vol-

canic Ash, edited by: Mackie, S., Elsevier, 2016.

Clarisse, L., Coheur, P. F., Prata, A. J., Hurtmans, D., Razavi,

A., Phulpin, T., Hadji-Lazaro, J., and Clerbaux, C.: Tracking

and quantifying volcanic SO

2

with IASI, the September 2007



eruption at Jebel at Tair, Atmos. Chem. Phys., 8, 7723–7734,

https://doi.org/10.5194/acp-8-7723-2008, 2008.

Clarisse, L., Prata, F., Lacour, J.-L., Hurtmans, D., Clerbaux, C., and

Coheur, P.-F.: A correlation method for volcanic ash detection

using hyperspectral infrared measurements, Geophys. Res. Lett.,

37, 19, https://doi.org/10.1029/2010GL044828, 2010.

Costa, A., Folch, A., and Macedonio, G.: A model for wet

aggregation of ash particles in volcanic plumes and clouds:

1. Theoretical formulation, J. Geophys. Res.-Sol. Ea., 115,

https://doi.org/10.1016/j.epsl.2005.11.019, 2010.

Degruyter, W. and Bonadonna, C.: Improving on mass flow rate

estimates of volcanic eruptions, Geophys. Res. Lett., 39, 16,

https://doi.org/10.1029/2012GL052566, 2012.

Draxler, R. and Rolph, G.: HYSPLIT (HYbrid Single-Particle La-

grangian Integrated Trajectory) model access via NOAA ARL

READY website, available at: http://www.arl.noaa.gov/ready/

hysplit4.html (last access: 1 September 2017), NOAA Air Re-

sources Laboratory, Silver Spring, 2003.

Durant, A., Rose, W., Sarna-Wojcicki, A., Carey, S., and Volentik,

A.: Hydrometeor-enhanced tephra sedimentation: Constraints

from the 18 May 1980 eruption of Mount St. Helens, J. Geophys.

Res.,


114,

B03204,


https://doi.org/10.1029/2008JB005756,

2009.


Eckhardt, S., Prata, A. J., Seibert, P., Stebel, K., and Stohl, A.: Esti-

mation of the vertical profile of sulfur dioxide injection into the

atmosphere by a volcanic eruption using satellite column mea-

surements and inverse transport modeling, Atmos. Chem. Phys.,

8, 3881–3897, https://doi.org/10.5194/acp-8-3881-2008, 2008.

Folch, A., Costa, A., and Macedonio, G.: FALL3D: A computa-

tional model for transport and deposition of volcanic ash, Com-

put. Geosci., 35, 1334–1342, 2009.

Folch, A., Costa, A., and Macedonio, G.: FPLUME-1.0: An in-

tegral volcanic plume model accounting for ash aggregation,

Geosci. Model Dev., 9, 431–450, https://doi.org/10.5194/gmd-9-

431-2016, 2016.

Fromm,

M.,


Kablick,

G.,


Nedoluha,

G.,


Carboni,

E.,


Grainger, R., Campbell, J., and Lewis, J.: Correcting the

record


of

volcanic


stratospheric

aerosol


impact:

Nabro


and Sarychev Peak, J. Geophys. Res.-Atmos., 119, 17,

https://doi.org/10.1002/2014JD021507, 2014.

Fu, G., Prata, F., Lin, H. X., Heemink, A., Segers, A., and Lu,

S.: Data assimilation for volcanic ash plumes using a satel-

lite observational operator: a case study on the 2010 Eyjafjal-

lajökull volcanic eruption, Atmos. Chem. Phys., 17, 1187–1205,

https://doi.org/10.5194/acp-17-1187-2017, 2017.

Glaze, L. and Baloga, S.: Sensitivity of buoyant plume heights

to ambient atmospheric conditions: Implications for vol-

www.atmos-chem-phys.net/17/10709/2017/

Atmos. Chem. Phys., 17, 10709–10732, 2017



Yüklə 451,19 Kb.

Dostları ilə paylaş:
1   ...   6   7   8   9   10   11   12   13   14




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə