4 Digit Up/Down Counter Circuit Тўрт разрядли олдинга/орқага сановчи санагичнинг структуравий ва принципиал схемаларини қуриш


-bit Synchronous Counter Waveform Timing Diagram



Yüklə 29,89 Kb.
səhifə2/3
tarix30.12.2023
ölçüsü29,89 Kb.
#167630
1   2   3
4-bit Synchronous Counter Waveform Timing Diagram

Because this 4-bit synchronous counter counts sequentially on every clock pulse the resulting outputs count upwards from 0 ( 0000 ) to 15 ( 1111 ). Therefore, this type of counter is also known as a 4-bit Synchronous Up Counter.
However, we can easily construct a 4-bit Synchronous Down Counter by connecting the AND gates to the Q output of the flip-flops as shown to produce a waveform timing diagram the reverse of the above. Here the counter starts with all of its outputs HIGH ( 1111 ) and it counts down on the application of each clock pulse to zero, ( 0000 ) before repeating again.
Binary 4-bit Synchronous Down Counter

As synchronous counters are formed by connecting flip-flops together and any number of flip-flops can be connected or “cascaded” together to form a “divide-by-n” binary counter, the modulo’s or “MOD” number still applies as it does for asynchronous counters so a Decade counter or BCD counter with counts from 0 to 2n-1 can be built along with truncated sequences. All we need to increase the MOD count of an up or down synchronous counter is an additional flip-flop and AND gate across it.
Decade 4-bit Synchronous Counter
A 4-bit decade synchronous counter can also be built using synchronous binary counters to produce a count sequence from 0 to 9. A standard binary counter can be converted to a decade (decimal 10) counter with the aid of some additional logic to implement the desired state sequence. After reaching the count of “1001”, the counter recycles back to “0000”. We now have a decade or Modulo-10 counter.
Decade 4-bit Synchronous Counter

The additional AND gates detect when the counting sequence reaches “1001”, (Binary 10) and causes flip-flop FF3 to toggle on the next clock pulse. Flip-flop FF0 toggles on every clock pulse. Thus, the count is reset and starts over again at “0000” producing a synchronous decade counter.
We could quite easily re-arrange the additional AND gates in the above counter circuit to produce other count numbers such as a Mod-12 counter which counts 12 states from”0000″ to “1011” (0 to 11) and then repeats making them suitable for clocks, etc.

Yüklə 29,89 Kb.

Dostları ilə paylaş:
1   2   3




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə