Voorkomen



Yüklə 137,55 Kb.
səhifə4/4
tarix02.03.2018
ölçüsü137,55 Kb.
#29289
1   2   3   4

Reprocessing


Unlike fuel from fossil plants that discharge ash with negligible heat content, fuel discharged from nuclear reactors contains appreciable quantities of fissile uranium and plutonium (‘unburned’ fuel). These fuel elements must be removed from a reactor before the fissile material has been completely consumed, primarily because of fission product buildup. Fission products capture large numbers of neutrons, which are necessary to sustain a chain fission reaction. In the interest of economic utilization of nuclear fuels and the conservation of valuable resources, several countries have constructed reprocessing plants to recover the residual uranium and plutonium values, utilizing a variety of physical and chemical methods.

Spent fuel contains fission products and actinides produced when nuclear fuel is irradiated in reactors, as well as any unburned, unfissioned nuclear fuel remaining after the fuel rods have been removed from the reactor core. After spent fuel is removed from reactors, it is stored in racks placed in storage pools to isolate it from the environment. An assumption of a cooling time of 160 days between the discharge of spent fuel from the reactor and the reprocessing of the fuel is based on the optimum for recycling plutonium as well as uranium.

Plutonium is removed from spent fuel by chemical separation; no nuclear or physical separation (as for example in uranium enrichment) is needed. To be used in a nuclear weapon, plutonium must be separated from the much larger mass of non-fissile material in the irradiated fuel.

After being separated chemically from the irradiated fuel and reduced to metal, the plutonium is immediately ready for use in a nuclear explosive device. If the reactor involved uses thorium fuel, 233 U, also a fissile isotope, is produced and can be recovered in a process similar to plutonium extraction.

The first plutonium extraction (reprocessing) plants to operate on an industrial scale were built at Hanford, Washington, during the Manhattan Project. The initial plant was built before the final parameters of the extraction process were well defined.

Reprocessing plants are generally characterized by heavy reinforced concrete construction to provide shielding against the intense gamma radiation produced by the decay of short-lived isotopes produced as fission products. Plutonium extraction and uranium reprocessing are generally combined in the same facility in the civilian nuclear fuel cycle. Although the United States no longer reprocesses civil reactor fuel and does not produce plutonium for weapons, other countries have made different choices. Britain, France, Japan, and Russia (among others) operate reprocessing plants.



Heavy industrial construction. All operations are performed in a facility that is usually divided into two structural sections (hardened and nonhardened) and two utility categories (radiation and ventilation/contamination). The hardened portion of the building (reprocessing cells) is designed to withstand the most severe probable natural phenomena without compromising the capability to bring the processes and plant to a safe shutdown condition. Other parts of the building (i.e., offices and shops), while important for normal functions, are not considered essential and are built to less rigorous structural requirements.

Radiation is primarily addressed by using 4- to 6-ft thick, high-den-sity concrete walls to enclose the primary containment area (hot cells). A proliferator who wishes to reprocess fuel covertly for a relatively short time -less than a year would be typical - may use concrete slabs for the cell walls. Holes for periscopes could be cast in the slabs. This is particularly feasible if the proliferator cares little about personnel health and safety issues.



Fuel storage and movement. Fuel is transported to the reprocessing plant in specially designed casks. After being checked for contamination, the clean fuel is lowered into a storage pool via a heavy-duty crane. Pools are normally 30-ft deep for radiation protection and contain a transfer pool, approximately 15-ft deep, that provides an underwater system to move the fuel into an adjacent hot cell.

Fuel disassembly. Fuel elements are breached (often chopped) to expose the fuel material for subsequent leaching in nitric acid (HNO3). Fuel cladding is frequently not soluble in nitric acid, so the fuel itself must be opened to chemical attack.

Fuel dissolution. Residual uranium and plutonium values are leached from the fuel with HNO 3 . The cladding material remains intact and is separated as a waste. The dissolver must be designed so that no critical mass of plutonium (and uranium) can accumulate anywhere in its volume, and, of course, it must function in contact with hot nitric acid, a particularly corrosive agent. Dissolvers are typically limited-life components and must be replaced. The first French civilian reprocessing plant at La Hague, near Cherbourg, had serious problems with leakage of the plutonium-containing solutions. Dissolvers may operate in batch mode using a fuel basket or in continuous mode using a rotary dissolver (wheel configuration).

Fissile element separation. The PUREX (Plutonium Uranium Recovery by EXtraction) solvent extraction process separates the uranium and plutonium from the fission products. After adjustment of the acidity, the resultant aqueous solution is equilibrated with an immiscible solution of tri-n-butyl phosphate (TBP) in refined kerosene. The TBP solution preferentially extracts uranium and plutonium nitrates, leaving fission products and other nitrates in the aqueous phase. Then, chemical conditions are adjusted so that the plutonium and uranium are reextracted into a fresh aqueous phase. Normally, two solvent extraction cycles are used for the separation; the first removes the fission products from the uranium and plutonium, while the second provides further decontamination. Uranium and plutonium are separated from one another in a similar second extraction operation. TBP is a common industrial chemical used in plasticizers and paints. Solvent extraction usually takes place in a pulse column, a several-inch diameter metal tube resistant to nitric acid and used to mix together the two immiscible phases (organic phase containing TBP and an aqueous phase containing U, Pu, and the fission products). The mixing is accomplished by forcing one of the phases through the other via a series of pulses with a repetition rate of 30 to 120 cycles/minute and amplitudes of 0.5 to 2.0 inches. The metal tube contains a series of perforated plates which disperses the two immiscible liquids.

U & Pu product purification. Although plutonium and uranium from sol-vent extraction are nearly chemically pure, additional decontamination from each other, fission products, and other impurities may be required. Large plants use additional solvent extraction cycles to provide this service, but small plants may use ion exchange for the final purification step (polishing).

Metal preparation. Plutonium may be precipitated as PuF 3 from aqueous nitrate solution by reducing its charge from +4 to +3 with ascorbic acid and adding hydrofluoric acid (HF). The resulting solid is separated by filtration and dried. Reprocessed uranium is rarely reduced to the metal, but it is converted to the oxide and stored or to the hexafluoride and re-enriched. Plutonium (and uranium) metal may be produced by the reaction of an active metal (calcium or magnesium) with a fluoride salt at elevated temperature in a sealed metal vessel (called a �bomb�). The metal product is freed from the slag, washed in concentrated HNO 3 to remove residue, washed with water, dried, and then remelted in a high temperature furnace (arc).

Waste treatment/recycle. Reprocessing operations generate a myriad of waste streams containing radioactivity. Several of the chemicals (HNO 3 ) and streams (TBP/kerosene mixture) are recycled. All streams must be monitored to protect against accidental discharge of radioactivity into the environment. Gaseous effluents are passed through a series of cleaning and filtering operations before being discharged ,while liquid waste streams are concentrated by evaporation and stored or solidified with concrete. In the ultimate analysis, the only way to safely handle radioactivity is to retain the material until the activity of each nuclide disappears by natural decay.

Early plants used �mixer-settler� facilities in which the two immiscible fluids were mixed by a propeller, and gravity was used to separate the liquids in a separate chamber. Successful separation requires that the operation be conducted many times in sequence. More modern plants use pulse columns with perforated plates along their length. The (heavier) nitric acid solution is fed in at the top and the lighter TBP-kerosene from the bottom. The liquids mix when they are pulsed through the perforations in the plates, effectively making a single reactor vessel serve to carry out a series of operations in the column. Centrifugal contactors using centrifugal force have also been used in place of mixer-settlers. The process must still be repeated many times, but the equipment is compact. New plants are built this way, although the gravity-based mixer-settler technology has been proven to be satisfactory, if expensive and space-consuming.

A single bank of mixer-settler stages about the size of a kitchen refrigerator can separate enough plutonium for a nuclear weapon in 1 à 2 months. A bank of eight centrifugal contactors can produce enough plutonium for an explosive device within a few days and takes up about the same space as the mixer-settler. Hot cells with thick radiation shielding and leaded glass for direct viewing, along with a glove box with minimal radiation shielding, are adequate for research-scale plutonium extraction, are very low technology items, and would probably suffice for a program designed to produce a small number of weapons each year. The concrete canyons housing many smaller cells with remotely operated machinery are characteristic of large-scale production of plutonium.

When plutonium is produced in a nuclear reactor, inevitably some 240 Pu (as well as heavier plutonium isotopes, including 241 Pu and 242 Pu) is produced along with the more desirable 239 Pu. The heavier isotope is not as readily fissionable, and it also decays by spontaneous fission, producing unwanted background neutrons. Thus, nuclear weapon designers prefer to work with plutonium containing less than 7 percent 240 Pu.

A method for separating plutonium isotopes could be used to remove the heavier isotopes of plutonium (e.g., 240 Pu) from reactor-grade plutonium, thus producing nearly pure 239 Pu. Uranium isotope separation techniques [e.g., atomic vapor laser isotope separation (AVLIS)] might be applied to this task. However, this would require mastery of production reactor and reprocessing technologies (to produce and extract the plutonium) in addition to isotope enrichment technology (to remove the heavier plutonium isotopes). In practice, it is simpler to alter the reactor refueling cycle to reduce the fraction of plutonium which is 240 Pu.

The plutonium must be extracted chemically in a reprocessing plant. Reprocessing is a complicated process involving the handling of highly radioactive materials and must be done by robots or by humans using remote manipulating equipment. At some stages of the process simple glove boxes with lead glass windows suffice. Reprocessing is intrinsically dangerous because of the use of hot acids in which plutonium and intensely radioactive short-lived fission products are dissolved. Some observers have, however, suggested that the safety measures could be relaxed to the extent that the proliferator deems his technicians to be ‘expendable’. Disposal of the high-level waste from reprocessing is difficult. Any reprocessing facility requires large quantities of concrete for shielding and will vent radioactive gases (Iodine-131, for example) to the atmosphere.


Signatures


An indigenous uranium mining industry might provide early indication of a clandestine uranium or plutonium-based weapon program and is a sure indicator of at least the possibility. For the plutonium path, natural uranium could fuel a graphite- or heavy-water moderated plutonium-production reactor. A sizable research program involving breeder-reactors or the production of heavy water or ultra-pure carbon and graphite products might also be cause for concern, especially if such programs were not easily justifiable on other accounts.

Small research or power reactors with high neutron flux and significant amounts of uranium-238 in their cores can also be used to produce plutonium. However, a 40 to 50 MW(t) undeclared reactor (enough to produce plutonium for at least one bomb per year) should be easily discernible to overhead infrared sensors, at least if it is built above ground and located away from heavy industrial areas (such a location might be chosen for security and safety reasons anyway).

Inspections of safeguarded reactors, especially if carried out at more random intervals, might detect unnecessary placement of uranium-238 in or around the core, augmenting the rate of plutonium production. Similarly, inspections of CANDU-style reactors (a heavy-water-moderated reactor that can be refueled online) or of frequently shut-down LWRs should call attention to very low-bum-up fuel cycles, from which the plutonium produced is predominantly plutonium-239, the isotope best suited for weapons.

In general, the plutonium-production route, which involves reprocessing of spent reactor-fuel to extract plutonium, would be easier to detect than would be a small-scale clandestine uranium-enrichment facility. Plutonium and uranium from spent fuel (as well as enriched uranium from research reactor cores), is reclaimed by chopping up and dissolving the fuel elements in acid, subjecting the solution to solvent-extraction and ion-exchange processes, and chemically converting the plutonium and uranium in the resulting liquids to metallic or oxide forms. Methods for doing this, including the most common one, known as PUREX, involve various well-understood chemical processes that use characteristic groups of materials.

Detection of these materials, either by environmental sampling or by impactions, could indicate reprocessing activity. Some chemicals might also be observed through export monitoring; for example, high-purity calcium and magnesium, which are used in the metal-conversion step, are included in the Nuclear Supplier Group�s new list of sensitive dual-use items to be subjected to export controls. In addition to the characteristic chemicals used in the PUREX process, effluents from reprocessing plants will contain telltale radioactive fission products, including radioactive isotopes of the noble gases xenon and krypton -- especially krypton-85 -� and possibly argon. Measurements made at the U.S. reprocessing facility at the Savannah River Plant in South Carolina have suggested that krypton-85 may be detectable, even from small facilities, at ranges of 10 kilometers or more.

Analysis of plutonium samples or effluents from reprocessing could provide further evidence of weapon intent by revealing the fuel�s irradiation level. For most types of reactor, a very low fuel-irradiation level would be a strong indicator of weapon activity. In addition, isotopic correlation techniques -- which compare the isotopic ratios of different samples of plutonium -- can provide sensitive indicators of plutonium production history or material diverted from one facility to another.


Sources and Methods


  • Plutonium Isotopics - Non-Proliferation And Safeguards Issues John Carlson, John Bardsley, Victor Bragin, John Hill Australian Safeguards Office, Canberra ACT, Australia - IAEA-SM-351/64

  • Adapted from - Nuclear Weapons Technology Militarily Critical Technologies List (MCTL) Part II: Weapons of Mass Destruction Technologies

  • MECHANICAL DRAFT COOLING TOWERS

  • Cooling Tower Doctor by Don Davis

  • Developing Indirect Dry Cooling Systems for Modern Power Plants Andr�s Balogh, Zoltan Takacs

  • Cooling Tower Institute

  • Description of Nuclear Power Plants and Sites, Plant Interaction with the Environment, and Environmental Impact Initiators Associated with License Renewal Generic Environmental Impact Statement for License Renewal of Nuclear Plants (NUREG-1437 Vol. 1)

Halveringstijd, effectieve


De tijdsduur waarin in een biologisch systeem de hoeveelheid van een radionuclide tot de helft afneemt, en wel door de gezamenlijke werking van radioactief verval en uitscheiding als gevolg van biologische processen.



waarin Teff = effectieve halveringstijd,


Tphys = fysische halveringstijd,
Tbiol = biologische halveringstijd.

Voor enkele radionucliden zijn de fysische, biologische en de daaruit afgeleide effectieve halveringstijd voor personen aangegeven:







Yüklə 137,55 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə