V – Vanadium Introduction



Yüklə 99,39 Kb.
Pdf görüntüsü
tarix05.03.2018
ölçüsü99,39 Kb.
#30455


V – Vanadium 

 

Introduction 

 

Vanadium is one of the lightest members of the 



first row transition elements, consisting of Sc, Ti, 

V, Cr, Mn, Fe, Co, Ni, Cu and Zn, and belongs to 

group 5 of the periodic table, along with Nb and 

Ta.  The element has an atomic number of 23, an 

atomic mass of 51, three main oxidation states 

(+3, +4 and +5) and two naturally occurring 

isotopes (

50

V, and 



51

V), of which 

51

V is the most 



abundant at 99.8% of the total mass. 

Vanadium is a lithophile metallic element at 

low pressure, but may be siderophile at the 

elevated pressures suggested for core formation in 

the Earth.  It is incompatible in most silicate 

minerals, although it may be moderately 

compatible in some pyroxenes (Snyder 1999). It 

forms several minerals including magnetite 

(Fe,V)

3

0



4

, vanadinite Pb

5

(VO


4

)

3



Cl, and carnotite 

K

2



(UO

2

)



2

(VO


4

)

2



.3H

2

O.  It is also present as a trace 



element in mica, apatite, pyroxene and amphibole.  

Montroseite VO(OH) occurs across a wide pH 

range under reducing conditions, exhibiting V in 

its lowest valency (V

3+

), and acts as a source for a 



wide range of V

3+

, V



4+

 and V


5+

 oxides and 

hydroxides.  Sulphides of V

4+

 are found in ore 



deposits.   

The trivalent ion V

3+

 has an ionic radius (64 



pm) almost identical to that of Fe

3+

 (65 pm).  



Because of this, V is frequently found as a 

substitute for Fe in magnetite and in the 

ferromagnesian silicate minerals formed during 

primary magmatic processes (Curtis 1964).  Mafic 

rocks are typically enriched in V relative to most 

intermediate and felsic rocks.  Primitive magma 

types including calc-alkaline, alkaline and 

tholeiitic rocks have broadly similar V 

concentrations (Taylor et al. 1969).  Mielke 

(1979) cites values: ultramafic 40 mg kg

-1



basaltic 250 mg kg



-1

, granitic 4488 mg kg

-1

, and 


with an average crustal abundance of 136 mg kg

-1

.  



In ultramafic rocks, the V content generally 

reflects the abundance of minerals, such as Fe-Ti-

Cr oxides and pyroxene.  Elevated V values are, 

therefore, indicative of mafic rocks.  Although 

described as a trace element, V is relatively 

abundant even though it only rarely forms 

independent minerals in igneous rocks.    

Vanadium is largely immobile during 

metamorphism (Condie 1976).  The V content of 

sedimentary rocks reflects primarily the 

abundance of detrital Fe oxides, clay minerals, 

hydrous oxides of Fe and Mn, and organic matter.  

The redox regime is important, V remaining 

mobile under oxidising conditions but being 

subject to precipitation just above the 

sulphate/sulphide redox threshold within a pH 

range of 5.08.0 (Brookins 1988).  The average V 

content of quartzitic sandstone and pure carbonate 

sediments is low (<15 mg kg

-1

), with higher 



values in greywacke (40150 mg kg

-1

), shale (90



260 mg kg

-1

), and clay (ca. 200 mg kg



-1

).  Coal 

may also contain appreciable amounts of V.  The 

most V-rich sedimentary rock is black shale, 

reflecting both the affinity of the element for 

organic sorption sites and its relative immobility 

under reducing conditions.  Cited average values 

for  loess  and river particulates are 73 and 170 

mg kg

-1

 V respectively (McLennan and Murray 



1999). 

Vanadium is a highly mobile element.  It 

displays both cationic character under acid 

conditions, as vanadyl VO

2+

 and VO


2

2+

 ions, and 



anionic character under less acid to alkaline 

conditions, as vanadate HVO

4

2-

 or H



2

VO

4



-

 ions 


(Brookins 1988).  The solubility of V is strongly 

controlled by its oxidation state.  Its solubility is 

highest in oxic environments, where vanadyl 

cations predominate.  Complexes with fluoride, 

sulphate and oxalate may also act to increase V 

solubility under oxidising conditions (Wanty and 

Goldhaber 1992), although the presence of U and 

phosphates can result in the formation of highly 

insoluble V

5+

 complexes.  Under more reducing 



conditions, the relatively immobile V

3+

 state 



dominates.   

Kabata-Pendias (2001) reports that the 

behaviour of V in soil has received little attention.  

It appears that Fe oxides hold a reasonable 

fraction of soil V, however, the role of clay 

minerals as well organic acids may be more 

significant than the V fraction adsorbed by Fe 

oxides.  The highest concentrations of V in soil 

are reported for soil developed on mafic rocks 

(150 to 460 mg kg

-1

 V), while the lowest were 



found in peat soil (5 to 22 mg kg

-1

 V).  The 



average V content of soil worldwide has been 

estimated to vary from 18 mg kg

-1

 for histosols to 



115  mg kg

-1

  for rendzinas (Kabata-Pendias 



2001). 

 

395




Well-drained, lowland areas are likely to host 

the highest V concentrations in stream water and, 

in almost all instances, the dispersal of V will be 

controlled by the prevailing rates of sorption to 

hydrous Fe and Mn oxides, clay and organic 

matter (Krauskopf 1956).  As a result, although V 

concentrations as high as 70 µg l

-1

 have been 



found in some natural water, most surface and 

groundwater rarely exceed 10 µg l

-1

 (Hem 1992).   



Anthropogenic sources of vanadium include 

oil and coal combustion, steel alloy tool 

production and traffic pollution.  Vanadium has a 

variety of industrial uses in metallurgy, 

electronics and dyeing.  Although the amounts of 

V used are small and are insignificant in terms of 

any direct anthropogenic input, the combustion of 

coal and the waste from such processes, e.g., fly-

ash, make a significant contribution to 

environmental contamination.   

Vanadium is biologically active and is an 

essential nutrient for many animals.  Its precise 

biochemical function is still in some doubt (WHO 

1996), but Frausto da Silva and Williams (1991, 

1994, 2001) suggest a role in peroxidase enzymes.  

An intake of over 10 mg V per day can be toxic 

for adults, but this greatly depends on its 

speciation and oxidation state; the source is 

usually airborne anthropogenic V (WHO 1996).  

In severe cases, toxic levels of V causes the 

inhibition of certain enzymes with animals, which 

has several neurological effects, and can cause 

breathing disorders, paralyses and negative effects 

on the liver and kidneys. 

Table 72 compares the median concentrations 

of V in the FOREGS samples and in some 

reference datasets. 

 

Table 72. Median concentrations of V in the FOREGS samples and in some reference data sets.



 

Vanadium 

(V) 

Origin – Source 

Number of  

samples 

Size fraction 

mm 

Extraction 

Median 

mg kg

-1

Crust


1)

Upper continental 

n.a. 

n.a. 


Total 

97 


Subsoil 

FOREGS 

790 

<2.0 

Total (ICP-MS) 

62.8 

Subsoil 

FOREGS 

784 

<2.0 

Aqua regia (ICP-MS) 

33.0 

Topsoil 

FOREGS 

843 

<2.0 

Total (ICP-MS) 

60.4 

Topsoil 

FOREGS 

837 

<2.0 

Aqua regia (ICP-MS) 

33.0 

Soil


2)

World n.a.  n.a. 

Total  90 

Soil, C-horizon

3)

Barents region 



1357 

<2 

Aqua regia (ICP-AES) 24.2 

Water 

FOREGS 

807 

Filtered <0.45 µm

 

0.46 (µg l

-1

Water


4)

World n.a.  n.a. 

  1 

(µg l


-1

) 



Stream sediment 

FOREGS 

852 

<0.15 

Total (XRF) 

62.0 

Stream sediment 

FOREGS 

845 

<0.15 

Aqua regia (ICP-AES)  

29.0 

Floodplain sediment 

FOREGS 

747 

<2.0 

Total (XRF) 

56.0 

Floodplain sediment 

FOREGS 

747 

<2.0 

Aqua regia (ICP-AES) 

29.0 

Stream sediment

5)

Canada 49 



938  <0.18 

Aqua regia (ICP-AES) 38 

1)

Rudnick & Gao 2004, 



2)

Koljonen 1992, 

3)

Salminen et al. 2004, 



4)

Ivanov 1996, 

5)

Garret 2006.



 

 

 



V in soil 

 

The median values for total vanadium (ICP-



MS analysis) are 63.0 mg kg

-1

 in subsoil and 60.0 



mg kg

-1

 in topsoil, with a range from 1.28 to 325 



mg kg

-1

 in subsoils and 2.71 to 537 mg kg



-1

 in 


topsoils.  The average ratio topsoil/subsoil is 

0.953. 


The V subsoil distribution map shows many 

similarities to the Fe map.  Low V areas in subsoil 

(<36 mg kg

-1

) are located mainly in the glacial 



drift covered sandy plains from Poland to the 

 

396




Netherlands, and throughout much of the Baltic 

states, and large parts of southern Finland and 

Sweden.   

High V values in subsoil (>96 mg kg

-1

) are 


present in north-western Spain (mainly associated 

with the ultramafic Ordenes ophiolite complex, 

and intermediate plutonic rocks), the western 

Pyrenees (black shales), Brittany, Central Massif 

(soils over Quaternary basalt), a north-south band 

in Italy from north of the Garda Lake to the 

Roman Alkaline Province, southern Sicily, Greece 

north of the Gulf of Corinth (terra rossa soil, 

ophiolite, bauxite and base metal mineralisation), 

the Dalmatian coast of Croatia, Slovenia and 

southern Austria (strong enrichment in karstic 

residual soil), eastern Slovakia (soils over 

volcanic rocks and Palaeogene flysch with 

ultramafic clasts), parts of Norway, the ice divide 

area of north-central Finland (which is rich in 

mica), the west coast of Wales and Scotland, and 

northern Ireland (over the Antrim basalt).  High V 

values express crystalline rocks of intermediate to 

mafic or alkaline affiliation, including greenstone 

belts, and also karst with soil on carbonate rocks 

(Greece, Croatia, Slovenia).  In northern Finland 

V-bearing iron ores are present, and magnetite has 

a tendency to be enriched during weathering.  

Vanadium in subsoil is also enhanced in southern 

Portugal, and the French-Belgian Ardennes. In 

central and eastern England, high V levels in 

subsoil are associated with Mesozoic sedimentary 

ironstone. A point V subsoil anomaly in central 

Spain is in igneous rocks of the Cordillera 

Central. 

The topsoil V 

 

map shows some differences 



with respect to the subsoil map.  In particular, the 

subsoil anomaly disappears completely in the 

topsoil in eastern Slovakia; there is enrichment in 

the illuvial layer of the podzolic topsoil in 

northern Fennoscandia, because metals are bound 

to organic matter; in the Spanish Sierra Nevada, 

the central Pyrenees and Gran Canaria, topsoilis 

enriched in V.   

In subsoil, V shows a very strong positive 

correlation with Fe (0.91) and Sc (0.91), a strong 

correlation (>0.6) with Co, Cu, Ti, Al, Ga, In, Eu 

and some of the heavy REEs,  and a good 

correlation (>0.4) with Mn, Cr, Ni, Nb, Te, Zn, Y 

and the remaining REEs.  It has a good negative 

correlation with SiO

2

 (-0.43).  The correlations 



pattern is the same in topsoil. 

The analysis with ICP-AES after aqua regia 

extraction  yields  a  median  V  content  of  33 

mg kg


-1

 in both subsoil and topsoil, with ranges 

from 2 to 234 and from 1 to 281 mg kg

-1

 



respectively.  It can be concluded that only about 

half the vanadium was extracted with aqua regia.  

The subsoil distribution pattern shows overall 

similarity with total V but some areas (including 

Galicia in north-west Spain, Wales, Slovakia, and 

southern Norway) show fewer high values for 

extractable vanadium.  On the topsoil distribution 

map, extractable V is much lower in north-west 

Spain, the western Pyrenees, south-west England 

and south-central Norway. 



 

 

V in stream water 

 

Vanadium values range over three orders of 



magnitude, from <0.05 to 19.5 µg l

-1

, with a 



median value of 0.460 µg l

-1

.  Vanadium 



distribution resembles that of As, Mo, Sb, Se, U 

and W.  Concentrations in alkaline stream water 

in the Mediterranean region tend to be enhanced. 

Lowest V values stream water (<0.016 µg l

-1



are found in central and northern Sweden, almost 



entire Norway (Precambrian and Caledonian 

rocks), western Scotland, Wales and western 

Ireland on Caledonides, and in north-west of 

Iberian Peninsula on Variscan rocks.  In Alpidic 

Europe they occur in the western Alps of south-

east France and north-west Italy, in western 

Austria and on Crete.  Typically high-relief, high 

rainfall areas in north-west Europe show the 

lowest V values, indicating a strong topographic 

and climatic control factor. 

High  V  concentrations stream water (>1.25 

µg l


-1

) occur in central and south-west Finland and 

southernmost Sweden on Svecofennian rocks, in 

Denmark, north-west Germany on glacial deposits 

and in the Netherlands on Quaternary.  In 

southern and western coast of Finland, the stream 

catchments are dominated by V-bearing clay soil

and some V occurrences are known in the central 

parts of the country with anomalies in stream 

sediment.  In Variscan Europe, enhanced V occurs 

in the south-eastern tip of England, in Lorraine 

and in an area from Paris to Brittany in France, in 

the Iberian Pyrite Belt of southern Portugal and 

Spain.  In the Alpidic part of Europe, high V in 

 

397



stream water occurs in eastern Czech Republic 

(partly Variscan), eastern Austria, south-western 

Slovakia and across Hungary to eastern Croatia, in 

the latter two mostly on Quaternary deposits of 

Pannonian basin.  In Italy, moderately high V 

stream water values in the Po River valley, and 

widely distributed in central and southern Italy are 

in part associated with alkaline volcanism, in 

western Sicily, and eastern and north-eastern 

Greece bordering the Aegean Sea (Plant et al

2005).  Isolated high V values in central and the 

extreme south-east of England may be associated 

with ironstone and the Weald district respectively.  

High V point anomalies in Greece are related to 

ophiolite, amphibolite, Fe-Ni and base metal 

mineralisation.  Anomalous stream water V 

contents in south-central Slovakia are caused by 

Tertiary volcanic rocks of predominantly andesitic 

composition.  An isolated stream water V 

anomalous point in Hungary has no apparent 

explanation. 

In Spain and Portugal, vanadium shows a 

distribution opposite to the one in solid sample 

media; it is controlled by pH, Eh and climate, with 

the  highest  values  found in alkaline stream 

water  with much dissolved organic carbon 

(DOC). 

The discussed patterns of V in stream water of 



Europe are distributed according to two major 

models, the Major-ions and the REEs distribution 

patterns.  Both of them are mainly exogenic, in 

response to the climatic N-S zonation of the 

continent, and to rainfall and infiltration in 

connection with topography. The much stronger 

Major-ions pattern explains most of the V 

distribution in southern and central Europe, and 

the REEs pattern anomalies in Finland, Sweden, 

Denmark and adjacent Germany. Geogenic 

features include high V concentrations in stream 

water in the Italian and Greek alkaline volcanic 

provinces (Plant et al. 2005).  The anomalies 

appear also in the solid sample media of these 

regions. In other areas the concordance of stream 

water and solid media patterns is very rare. 



 

 

V in stream sediment 

 

Total vanadium in stream sediment has a 



median value of 62.0 mg kg

-1

 (XRF analysis), 



with a range from < 2 to 407 mg kg

-1



The V stream sediment distribution map shows 

low V areas (<37 mg kg

-1

) located mainly in the 



sandy plains from Poland to the Netherlands, 

throughout much of the Baltic states, south-central  

Sweden, western Ireland, eastern France and most 

parts of central southern and eastern Spain.   

High  V  values in  stream   sediment  (>89  

mg kg


-1

) are located mainly in southern Finland, 

northern Fennoscandia (iron ores), central Norway 

(Caledonian layered mafic intrusions such as 

Sulitjelma), and the Caledonides of Norway 

generally.  The North-Atlantic Tertiary volcanic 

province shows high V stream sediment values in 

western Scotland (central complexes of Skye, 

Mull, Rhum and Ardnamurchan) and in northern 

Ireland (Antrim plateau basalt).  Most of Britain 

shows high V values, which may be caused by 

coprecipitation with iron in stream sediment.  In 

central and southern Europe, in contrast, V 

anomalies are scarce and are limited to southern 

Portugal and adjacent

 

Spain (Palaeozoic flysch 



sediments and Ossa Morena metamorphic zone), 

north-western Spain (ultramafic rocks of the 

Ordenes ophiolite complex), the Central Pyrenees, 

the Bohemian Massif, an area in the highest 

western Alps (ophiolites near Mont Blanc and 

Matterhorn), the Roman Alkaline Province in 

Italy, a point anomaly at Roccamonfina in 

Campania, and north-eastern and central Greece 

(ophiolite, lignite, Fe-Ni, Cr, phosphorite and 

base-metal mineralisation).  In addition, scattered 

V stream sediment point anomalies throughout 

Europe could be caused by local geological 

substrate or by coprecipitation conditions in 

stream sediment, and should be investigated 

locally. 

Although vanadium is generally a lithophile 

element in the primary (igneous) environment 

(except in magnetite and some Fe-silicates), it 

occurs with the siderophile element iron in the 

secondary environment, adsorbed or in 

coprecipitation with Fe-oxides/hydroxides.  The 

distribution of V on the stream sediment map is 

very similar to that of Fe.  The correlation 

coefficient Fe-V is 0.87 (very strong) in stream 

sediment.  Vanadium also shows a strong 

correlation (>0.6) with Al, Ga, Ti and Co, and a 

good correlation (>0.4) with Eu, Ni, Cu, Zn and 

Nb.   


The analysis of stream sediment samples by 

ICP-AES after aqua regia extraction yields a 

 

398



median extractable V content of 29 mg kg

-1

, and a 



range from 4 to 306 mg kg

-1

.  This indicates that 



about 70% of the total V is extracted on average.  

The  aqua regia extractable V stream sediment 

distribution pattern is the same everywhere except 

in the Pyrenees (black shale) and northern 

Portugal-Spain (mafic/ultramafic rocks) where the 

extractable V is lower. 

 

 

V in floodplain sediment 

 

Total V values in floodplain sediment, 



determined by XRF, vary from <2 to 266 mg kg

-1



with a median of 56 mg kg

-1

, and the aqua regia 



extractable from 3 to 140 mg kg

-1

 V, with a 



median of 29 mg kg

-1

. The aqua regia leach 



extracts on average 52% of the total V. The 

general distribution across the continent is roughly 

similar, but varies in detail.   

Low total V values in floodplain sediment 

(<34 mg kg

-1

) occur over the glacial drift covered 



plain from Elbe river in Germany across the 

whole of Poland and Lithuania to western Latvia; 

in central and eastern Spain on mostly Mesozoic 

and Tertiary rocks  (clastics and carbonates); on 

carbonate and clastic rocks of Aquitaine and 

Rhône basins in France; on loose molasse basin 

deposits of central-north Austria.  Low total V 

values in floodplain sediment also occur in south-

east Finland, south Sweden and southernmost 

Norway on largely granitic rocks of the 

Fennoscandian Shield, and over metamorphic and 

granitic rocks and Old Red Sandstone in the 

northern half of Scotland.   

High total V values in floodplain sediment 

(>81 mg kg

-1

) occur in the Precambrian Shield 



rocks of Fennoscandia on old marine clay areas of 

southern, central and northern Finland (e.g., 

Koitelainen Cr-V-PGE); in northern Sweden (e.g., 

Kirunavaara-Norrbotten mineralised area), central 

and southern Sweden (also near Taberg V-Ti-Fe 

deposit); in greenstone belts of central and 

northern Norway, and in the Caledonides part, in 

north and south-central Norway, partly over 

gabbroic areas; the Midland Valley of Scotland 

(mafic volcanics, 200 mg kg

-1

), Wales (mafic 



volcanics) and south-east England (possibly 

industrial pollution).  In Variscan Europe, high V 

values in floodplain sediment are found over 

rocks of the Iberian Portuguese-Spanish Pyrite 

Belt extending into the Córdoba-Pedroches Zn-Pb 

district with Carboniferous black shale; and the 

north-west part of Spain and adjacent Portugal 

(mafic and ultramafic rocks of the Ordenes 

complex, and intermediate plutonic rocks); in 

France, the Armorican Massif, part of Massif 

Central (basaltic volcanics in Auvergne), the 

western Pyrenees, and the Jura Mountains the 

mineralised Erzgebirge and Bohemian Massif; in 

the Alpine realm, high V values are found in 

southern and eastern parts of Austria, most of 

Slovakia, Hungary and Croatia, northern Corsica, 

north-western Italy and the upper Po River basin 

and the Roman alkaline magmatic province; 

Albania and northern Greece with ophiolite, 

lignite, Fe-Ni, Cr, base-metal and phosphorite 

mineralisation.  A very high V value in floodplain 

sediment occurs on the basalt of Canary Islands 

(181 mg kg

-1

).   



The highest floodplain sediment V value is 

found in the mineralised Oslo Rift (266 mg kg

-1

).  


High V values that occur in England on the 

Blackwater River to the north-east of London may 

be due to industrial pollution, and in Germany on 

the Weser river (224 mg kg

-1

) to the north of 



Bremen to coal and oil combustion.  The high 

floodplain sediment V value in western Croatia is 

explained by enrichment in karstic soil. 

Vanadium in floodplain sediment has a very 

strong positive correlation with Fe

2

O



3

 and Ti


2

O, a 


strong correlation with Al

2

O



3

, Ga, Co, Nb, Ce, La, 

Eu, Sm, Gd and Y, and a good correlation with Li, 

Ta, Cu, Th and the remaining REE. 

The  aqua regia V floodplain sediment 

distribution map is similar to the total XRF map, 

but with a more pronounced anomaly in southern 

England, southern Italy and Sicily, southern and 

northern Finland, and north-east France.  On the 

other hand the area with high V values is less 

conspicuous in central Norway, in Austria, 

Hungary and Slovenia, southern Portugal and in 

Brittany in France. 

It is concluded that the V spatial distribution in 

floodplain sediment is related to bedrock geology 

and mineralisation, especially mafic and 

ultramafic lithology, but also to clay-rich soil with 

high Al


2

O

3



 contents. 

 

 

 

399



V comparison between sample media 

 

Patterns in V distribution between all solid 



sample media are broadly similar, although stream 

sediment concentrations are higher than in other 

sample media throughout most of Britain and 

Ireland and in southern Norway (Fe and Mn oxide 

precipitation induced by low pH, high rainfall 

conditions). These patterns are similar to those 

seen for Fe, but weaker.  Lower V is present in 

stream sediment throughout Croatia, Slovenia and 

southern Austria (possibly explained by the 

removal of fine-grained material from the residual 

soils).  Vanadium values in subsoil in north-

western Spain are higher than in other solid 

sample media.  Vanadium is higher in stream 

sediment in southern Portugal compared to other 

solid sample media.  Lower V values are observed 

in floodplain sediment throughout the Pyrenees 

compared to the other solid sample media. 

 

Patterns between total and leachable (aqua regia



V concentrations are broadly similar, except in 

north-eastern Portugal and over the Pyrenees, 

where leachable V data are lower than total data in 

all sample media (no explanation).   

A boxplot comparing V variation in subsoil, 

topsoil, stream sediment and floodplain sediment 

is presented in Figure 51. 

Stream water V data show similar patterns to 

those observed in solid sample media throughout 

most of southern and eastern Europe, but opposite 

patterns occur throughout Fennoscandia 

(relatively immobile V

3+

 associated with reducing 



conditions), the Quaternary sediments of northern 

mainland Europe and most of the Iberian 

Peninsula (in the south, higher concentrations 

associated with oxic conditions).   

Figure 51. Boxplot comparison of V variation in subsoil, topsoil, stream 

sediment and floodplain sediment.

 

 

 



 

 

400



Yüklə 99,39 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə