Bijvoet centre for biomolecular research, vakgroep kristal- en structuurchemie, university of utrecht



Yüklə 316,05 Kb.
Pdf görüntüsü
səhifə14/14
tarix04.12.2017
ölçüsü316,05 Kb.
#13756
1   ...   6   7   8   9   10   11   12   13   14

9.3 PLATON - ANALYSE Menu

 

WinGX v1.64

Chapter. 9.3  PLATON

37

Atom sites that are not fully occupied are counted. A large fraction of



disordered atoms may be both a signal for serious structure determination

problems or less reliable/interesting results. A distinction is made for

'solvent molecules of less interest' (_302) and the 'main components'

(_301) 


_305 Test for 'Isolated' Hydrogen atoms

This test reports on hydrogen atoms that are not on bonding distance to any

atom.

_306 & _311 Test for 'Isolated' Oxygen atoms



This test reports on oxygen atoms that are not within bonding distance to

any other atom in the structure. A common reason may be that no hydrogen

atoms are given for a water molecule.

Alert _306 is issued for full weight atoms, _311 otherwise.

_307 Test for 'Isolated' Metal atoms

This test reports on metal atoms that are not bonded or at coordination

distance of other atoms. Isolated ions are very unusual (or non-existent ?)

_308 Test for single bonded metal atoms

This test reports on single bonded (coordinated) metal atoms/ions. This

represents a very unusual situation. There are literature examples where

such a 'single bonded metal' was shown to be a halogen.

 

_310 Test for 'Too close' (symmetry related) full weight atoms. 



This test identifies (very) short contacts between atoms that only becomes

apparent after the application of symmetry on the primary coordinate set.

_320, _321 : Checks on Hybridisation of C atoms 

This test is split up in two sections: the main molecule (_320) and solvent

molecules (_321).

The test attempts to assign one of three hybridisations to C atoms: sp, sp2

or sp3 on the basis of the angles around C. In this way, missing H atoms or

too many H-atoms on a carbon atom should be detected.

_350 : _373 : Test for Short/Long Bonds as compaired with standard values 

Large deviations from generally accepted values may indicate model

problems, overrefinement etc. Default (X-Ray) values are from SHELXL (X-H)

and Ladd & Palmer, Structure Determination by Xray Crystallography (1985).

Note: C4-C3 indicates a bond between an atom with 4 bonds and one with 3

bonds. Conjugated systems may cause some 'false alarm' messages.

_350 Short C  - H                         Reference Xray : 0.96 Ang

_351 Long  C  - H                                          0.96

_352 Short N  - H                                          0.87 Ang. 

_353 Long  N  - H                                          0.87

_354 Short O  - H                                          0.82

_360 Short C4 - C4                                         1.54




9.3 PLATON - ANALYSE Menu

 

WinGX v1.64

Chapter. 9.3  PLATON

38

_361 Long  C4 - C4                                         1.54



_362 Short C4 - C3                                         1.52 

_363 Long  C4 - C3                                         1.52 

_364 Short C4 - C2                                         1.46 

_365 Long  C4 - C2                                         1.46

_367 Long  C? - C?                                         1.50 

_368 Short C3 - C3                                         1.34 

_369 Long  C3 - C3                                         1.34 

_370 Short C3 - C2                                         1.31 

_371 Long  C3 - C2                                         1.31 

_372 Short C2 - C2                                         1.25 

_373 Long  C2 - C2                                         1.25 

_380 Check for Methyl Moiety refinement

This test alerts for possible unrefined CH3 moieties. (E.g. AFIX 33 instead

of AFIX 137 etc. within the SHELXL realm)

_390, _391 Test for unusual CH3 geometry.

_390 Reports on unusual X-C-H Angles

_391 Reports on unusual H-C-H Angles

Methyl moieties easily refine to poor geometries when refined in a poorly

defined electron densityi or due to orientational disorder. If so,

refinement with relevant con-/restraints should be considered.

_410, _413 : Tests for Short Intra and Intermolecular H...H Contacts

Short intermolecular H..H contacts may indicate incorrectly determined

structures (i.e. wrong symmetry, missed translation symmetry, wrong

position with reference to the symmetry elements, hydrogen atoms on atoms

where there should not be any  etc..). Short intramolecular contacts may

arise when H-atoms are in (false) calculated positions.  Short

intramolecular contacts may also be a sign for a false structure with the

molecule sitting on a site with improper site symmetry (e.g. '2' instead of

'-1') which may happen when a lattice translation is missed. Short contacts

are defined using a van der Waals radius of 1.2 Angstrom. For

intermolecular contacts, an alert is generated for contacts less than 2.4

Angstrom. For intramolecular contacts alerts are generated for contacts

less than 2.0 Angstrom. 

Shorter intramolecular contacts may make sense for crowded configurations,

in particular when hydrogen atoms are calculated in idealised positions.

_412 & _413 report on short H .. H contact involving CH3 H-atoms. Those

positions are often optimal when in calculated position.

_416 : Test for short intra D-H .. H-D contacts 

Such contacts may be related to disordered of misplaced H-atoms.

_417 : Test for short inter D-H .. H-D contacts 

Such contacts may be related to disordered of misplaced H-atoms.

_420 : Test for D-H without acceptor 




9.3 PLATON - ANALYSE Menu

 

WinGX v1.64

Chapter. 9.3  PLATON

39

Potential hydrogen bond donors are checked for the presence of suitable



acceptors using commonly used (Jeffrey) H-bond criteria. As a general rule

there should be an acceptor for each donor. Exceptions are very rare for O-

H and more common for -NH and -NH2. A common error is an -OH on a

calculated position pointing in the wrong direction. 

_430 : Test for short intermolecular D..A distances

This test alerts for possibly missed hydrogen bonds as indicated by short

(i.e. shorter than sum of the van der Waals radii - 0.2) donor - acceptor

distances.

_431 : Test for short intermolecular Hl...D distances 

 

This test reports on short intermolecular halogen .. donor/acceptor atom-



type distances.

_432 : Test for short intermolecular distances 

This test reports on short intermolecular atom-type distances falling in

anather class than alerts _430, _431.

 

_601, _602 : Solvent Accessible Void(s) Test(s)



Crystal structures in general do not contain large solvent accessible voids

in the lattice. Most structures loose their long-range ordening when

solvent molecules leave the crystal. Only when the remaining network is

strongly bonded (e.g. zeolites and some hydrogen bonded networks) the

crystal structure may survive. Residual voids in a structure may indicate

the omission of (disordered)

density from the model. Disordered density may go undetected when smeared

since peak search programs are not designed to locate maxima on density

ridges. The presence or absence of residual density in the void may be

veryfied on a printed/plotted difference Fourier map or with

PLATON/SQUEEZE. Voids of 40 Ang**3 may accommodate water. Small molecules

such as tetrahydrofuran have typical volumes in the 100 to 200 Ang**3

range.

_601 : This test reports the volume of the largest solvent accessible void



       in the structure.

_602 : This test reports on a void, too large for the current PLATON

version

       for more detailed analysis. 



_701, _702, _703 Check for consistency of derived geometry and coordinates

The bond distances, angles and torsion angles given in the CIF are cross-

checked with corresponding values calculated from the coordinates. Alerts

are set at 1,2 and 3 sigma deviation levels.

Note: Default s.u.'s are used where no su given (e.g. for C-H)

In general, all differences should be within the associated su. Small

differences may arise from rounding. Very large deviation (or zero

distance) normally indicate incorrectly specified symmetry operations on

the associated atoms, or 'cut-and-pasting' of incompatible CIF's.

_704 Check for consistency of contact distance geometry and coordinates




9.3 PLATON - ANALYSE Menu

 

WinGX v1.64

Chapter. 9.3  PLATON

40

Intermolecular contacts listed in the CIF are checked against the



coordinates in the CIF. Alerts are set at 1,2 and 3 sigma deviation levels.

_705, _706, _707, _708 Check of H-Bond geometry against coordinates

Hydrogen-Bond data (D-H, H..D, D..A, D-H..A) listed in the CIF are checked.

Alerts are set at 1,2 and 3 sigma deviation levels.

_710 Check for linear torsions

Torsion angles specified in the CIF are checked for the 'linear variety'

where one or both of the 1-2-3 and 2-3-4 bond angles are close to 180 Deg.

SHELXL97 will generate those 'torsions' for molecules containing linear

moieties (E.g. metal-C=O).

_711 to _718 Inconsistent labels

When labels are found on geometry items (bonds, angles etc.) that are not

in the coordinate list, and alert _71n is issued, related to alert _70n.

_721, _722, _723, _724 Check for consistency of derived geom. and

coordinates

Same as _701, _702, _703, _704, but for distances, angles and torsions

without su (esd). Difference is tested in terms of Angstroms and Degrees.

_725, _726, _727, _728 Check of H-Bond geometry against coordinates

Same as _705, _706, _707, _708, but for distances and angles without su

(esd). Differences are tested in terms of Angstrom and Degrees.

_731 to _738 Check on 'Comparable' reported and calculated s.u.

Same as _701 to _708 but for reported and calculated s.u.'s (Ratio)

This range of checks should warn for erroneous rounding:

E.g.         105.5(19) to 105.5(2)

             105.0(5)  to 105(5)

etc.

_741 to _748 Check for missing s.u.'s on bonds, angles, torsions



An alert in this series generally indicates a missing s.u. on the reported

bond, angle, torsion.

_751 to _758 Check for senseless s.u.'s on Bonds, Angles, Torsions

Alerts are issued for constrained bonds, angles, torsions (i.e. with the R

flag in the CIF or of the type X-Y-X' = 180 where Y is on an inversion

center.


_761, _762 Check for presence of X-H bonds and X-Y-H or H-Y-H angles

The CIF should also contain those data.

_763, _764 Check for too few or too many non X-H Bonds in CIF

_780 Check for Connected Atom SET




9.3 PLATON - ANALYSE Menu

 

WinGX v1.64

Chapter. 9.3  PLATON

41

Atoms given in a CIF should form a 'connected set', i.e. no symmetry



operations are needed to get atoms in a bonding position. A connected set

of atoms is not needed for the refinement (unless hydrogen atoms are to be

added at calculated positions). Geometry listings (bonds,angles,torsions &

H-bonds) become unwieldy

for non-connected atom sets.

_790 Check for Residue Centres to be within the Unitcell bounds 

Unless for a good reason, molecular species should be transformed (by

symmetry and/or translation) so that their centres of gravity are close to

or within the unitcell bounds.

This is a strict rule for the main species. Deviations from this general

rule are smaller additional species when relevant for intermolecular

interactions with the main species.

 

11. SQUEEZE, An effective cure for the disordered solvent syndrome in crystal

structure refinement.      

11.1 General

See  P. v.d. Sluis & A.L. Spek. Acta Cryst. (1990), A46, 194

The current version of SQUEEZE has been designed, dimensioned and tested for small

moiety structures containing disordered solvent molecules of the type toluene, CH

2

Cl

2



,

tetrahydrofuran, water, methanol  etc..  Anions may be treated in the same way. However,

take care of the problem of uncertainty of charge balance.

Large voids currently require significant computing in the stage where the size and shape of

the solvent accessible void is determined. All calculations are done in the triclinic system

(data are expanded automatically when appropriate). Reflection data and FFT-array are stored

in memory i.e. large structures (and high symmetry) may require large amounts of memory

(change parameter NP21, that defines the available scratch area, globally to a larger value). 



11.2 Implementation and Use

SQUEEZE as implemented in the program PLATON should be compatible with small-moiety

structure refinement usage of the program SHELXL-97.  The program is used as a filter. Input

files are :

•  name.HKL  SHELX file  (HKLF type 4)

•  name.RES  SHELX file (complete set of refined model parameters, including hydrogen

atoms but excluding any dummy atoms used to  describe the disorder region)

 

Invoke the program  by giving, on the prompt >> (or click on the menu) the instruction:



CALC SQUEEZE

The result will be in two files:

•  name.LIS a listing file giving details of the calculations

•  name.HKP: a modified reflection file against which the ordered structure parameters can

be refined (the solvent contribution has been eliminated from the reflection  data.)



9.3 PLATON - ANALYSE Menu

 

WinGX v1.64

Chapter. 9.3  PLATON

42

In order to run SHELXL-97 on the 'solvent-free' Fo



2

 data you will need to rename the file



name.HKP to name.HKL  In order to get an .FCFstyle file (Fo

2

 + Fc



2

 (model + solvent)) you

will need to run PLATON with the option

CALC FCF


Final R-values are reported on the basis of the WGHT parameters in the name.RES file. There

will be a difference in reflection count as compared with the SHELXL-run due to the

differing number of surviving 'observed' reflections. The procedure (starting from the original

reflection data) can be repeated using the newly refined parameters when desired. This may

define a 'refined' void area. However, there will be rarely a need to repeat the procedure. The

'difference-map' improvement potential of this technique has been demonstrated for small

molecule structures. The technique should also work for protein data. However, this has not

been tested by us as yet with PLATON/SQUEEZE. Current design features may cause

problems when tried. 

A directory containing test-examples is in (the PLATON ftp site at)

/pub/unix/platon/TEST/SQUEEZE_TEST.' 

11.3 Notes on SQUEEZE 

•  The record length of the name.HKP file has been increased above 80 to accommodate

additional data (the exact details are not fixed)

•  The SHELXL-TWIN instruction is not available as yet in PLATON

•  PLATON internally calculates structure factors for the model given  in the shelxl.ins file.

•  The solvent contribution to the structure factors is taken as 'error-free'. This means that the

'solvent-free' Fo

2

 keep their original su's (esd's)



•  The method relies heavily on the quality of the low-order reflections. The dataset should

be as complete as possible. Systematic errors may hamper the quality of the results.

Current conditions for applicability are

1.  Reasonable data-resolution (say 25 degrees Mo)

2.  Structure of the known part completed with H-atoms

3.  No more than 26 'voids' in the unit-cell

4.  Disorder density should be well outside the van der Waals  surface of the known structure

5.  The area to be SQUEEZED should not be too large (say  less than ~30% of the unit-cell

volume.

11.4 Interpretation of the results

 

1. A successful application of SQUEEZE will show the following results:



•  A new hkl-file against which a satisfactory refinement of the discrete model can be done

(purpose: good geometry, good R-value)

•  Smooth convergence of the SQUEEZE iteration.

•  Significant improvement of the R-value in low resolution data. (see table at the end of the

listing file).

•  The number of electrons reported to be found in a void is close to that expected for the

assumed solvent.

•  The difference map peaklist should not contain significant peaks outside the VOID areas. 

•  Peaklist is given in the file name.SQZ



9.3 PLATON - ANALYSE Menu

 

WinGX v1.64

Chapter. 9.3  PLATON

43

 



2. Problems are indicated when:

•  Convergence is unstable

•  A large number of reflections left out during the iteration process (This may be well

indicative for problems with the data, and should be checked for). 

3. A report on the use of SQUEEZE should always state for each  (significant) independent

void: 


•  Where the void is (i.e. x,y,z)

•  Its volume

•  The number of electrons recovered.

12  PLATON in the WinGX implementation

The version of PLATON in WinGX is virtually identical to the UNIX workstation version,

except that System S is not available (it is too UNIX specific). The major differences  concern

the input and output files. To maintain the normal WinGX file naming protocols, the ASCII

listing file is renamed as PLATON.LST while the input files are generally created

automatically. In normal operation, a temporary file called name.SPF is created by reading, in

the following order, the SHELXL.LST (to try and obtain errors on the coordinates), the

name.RES file or the name.INS file. If there is some problem with any/either of these files,

the program may abort. The first thing to check is whether the SHELXL.LST file is from a

refinement which has terminated normally - if not delete this file.  The output name.HKP files

are also usually renamed depending on the operation carried out The program is ALWAYS

run in locked mode because of this renaming procedures. The hypertext help functions

exactly as in the UNIX version. .



Document Outline

  • 1. Introduction to PLATON
    • 1.1 Coordinate data input standards
    • 1.2 Reflection data format
    • 1.3 Menus and mouse clicking
    • 1.4 Introductory tutorial
    • 1.5 Analytical absorption correction
    • 1.6 Reciprocal lattice symmetry
    • 1.7 Program PLUTON
    • 1.8 Window Menu
      • 1.8.1 PLATON
      • 1.8.2 PLUTON
    • 1.9 Hard-copy graphics
    • 1.10 Ray-traced molecular graphics
    • 1.11 Printing
    • 1.12 CIF-validation
    • 1.13 Miscellaneous
  • 2. On the internal workings of PLATON
  • 3. Summary of keyboard commands for PLATON
    • 3.1 Instructions preceding all calculations
    • 3.2 Calculations
    • 3.3 Plots
    • 3.4 General instructions
  • 4. Other options in PLATON
    • 4.1 Cell transformation
    • 4.2 Transformation of hkl and SHELX style direction cosines
    • 4.3 Colour Options in PLUTON
    • 4.4 VOID & SOLV calculations.
    • 4.5 ASYM-VIEW
    • 4.6 LEPAGE - metrical symmetry check
    • 4.7 Techniques for absorption correction in PLATON
    • 4.8 MULABS - Blessing's method for absorption correction
    • 4.9 Psi-scan based absorption correction
    • 4.10 Xtal-Plot
    • 4.11 Residue Numbers in PLATON and PLUTON
    • 4.12 Atom renaming in PLUTON (.res files).
    • 4.13 Default instructions for PLUTON
    • 4.14 Graphics (Meta, POVRAY, RASMOL)
    • 4.15 Output Listings .lis & .lps (Print & View)
    • 4.16 PLATON Main-Menu Options
    • 4.17 PLATON/ORTEP (Sub) Menu Options
      • PLATON/ORTEP SUB-MENU
    • 4.18 PLATON and CSD-FDAT files
  • 5.  Terms and notions
    • 5.1 The n.ijk symmetry operation on input
    • 5.2 Disorder
    • 5.3 Molecules and Residues
  • 6. Parameter files
    • 6.1 The SPF format
  • 7 Space group symmetry
    • 7.1 Space group names known to the program
    • 7.2 Nonstandard settings with cell transformations
  • 8. Atomic radii used in PLATON
  • 9.  Internal parameters
  • 10. CIF-validation documentation (VALIDATION.DOC)
  • 11. SQUEEZE, An effective cure for the disordered solvent syndrome in crystal structure refinement.
    • 11.1 General
    • 11.2 Implementation and Use
    • 11.3 Notes on SQUEEZE
    • 11.4 Interpretation of the results
  • 12  PLATON in the WinGX implementation

Yüklə 316,05 Kb.

Dostları ilə paylaş:
1   ...   6   7   8   9   10   11   12   13   14




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə