Data Mining: Practical Machine Learning Tools and Techniques, Second Edition



Yüklə 4,3 Mb.
Pdf görüntüsü
səhifə6/219
tarix08.10.2017
ölçüsü4,3 Mb.
#3816
1   2   3   4   5   6   7   8   9   ...   219

P088407-FM.qxd  4/30/05  10:55 AM  Page xvi


List of Figures

Figure 1.1

Rules for the contact lens data.

13

Figure 1.2



Decision tree for the contact lens data.

14

Figure 1.3



Decision trees for the labor negotiations data.

19

Figure 2.1



A family tree and two ways of expressing the sister-of

relation.

46

Figure 2.2



ARFF file for the weather data.

54

Figure 3.1



Constructing a decision tree interactively: (a) creating a

rectangular test involving petallength and petalwidth and (b)

the resulting (unfinished) decision tree.

64

Figure 3.2



Decision tree for a simple disjunction.

66

Figure 3.3



The exclusive-or problem.

67

Figure 3.4



Decision tree with a replicated subtree.

68

Figure 3.5



Rules for the Iris data.

72

Figure 3.6



The shapes problem.

73

Figure 3.7



Models for the CPU performance data: (a) linear regression,

(b) regression tree, and (c) model tree.

77

Figure 3.8



Different ways of partitioning the instance space.

79

Figure 3.9



Different ways of representing clusters.

81

Figure 4.1



Pseudocode for 1R.

85

Figure 4.2



Tree stumps for the weather data.

98

Figure 4.3



Expanded tree stumps for the weather data.

100


Figure 4.4

Decision tree for the weather data.

101

Figure 4.5



Tree stump for the ID code attribute.

103


Figure 4.6

Covering algorithm: (a) covering the instances and (b) the

decision tree for the same problem.

106


Figure 4.7

The instance space during operation of a covering 

algorithm.

108


Figure 4.8

Pseudocode for a basic rule learner.

111

Figure 4.9



Logistic regression: (a) the logit transform and (b) an example

logistic regression function.

122

x v i i


P088407-FM.qxd  4/30/05  10:55 AM  Page xvii


Figure 4.10

The perceptron: (a) learning rule and (b) representation as 

a neural network.

125


Figure 4.11

The Winnow algorithm: (a) the unbalanced version and (b) 

the balanced version.

127


Figure 4.12

kD-tree for four training instances: (a) the tree and (b)

instances and splits.

130


Figure 4.13

Using a kD-tree to find the nearest neighbor of the 

star.

131


Figure 4.14

Ball tree for 16 training instances: (a) instances and balls and

(b) the tree.

134


Figure 4.15

Ruling out an entire ball (gray) based on a target point (star)

and its current nearest neighbor.

135


Figure 4.16

A ball tree: (a) two cluster centers and their dividing line and

(b) the corresponding tree.

140


Figure 5.1

A hypothetical lift chart.

168

Figure 5.2



A sample ROC curve.

169


Figure 5.3

ROC curves for two learning methods.

170

Figure 5.4



Effects of varying the probability threshold: (a) the error curve

and (b) the cost curve.

174

Figure 6.1



Example of subtree raising, where node C is “raised” to

subsume node B.

194

Figure 6.2



Pruning the labor negotiations decision tree.

196


Figure 6.3

Algorithm for forming rules by incremental reduced-error

pruning.

205


Figure 6.4

RIPPER: (a) algorithm for rule learning and (b) meaning of

symbols.

206


Figure 6.5

Algorithm for expanding examples into a partial 

tree.

208


Figure 6.6

Example of building a partial tree.

209

Figure 6.7



Rules with exceptions for the iris data.

211


Figure 6.8

A maximum margin hyperplane.

216

Figure 6.9



Support vector regression: (a) 

e = 1, (b) e = 2, and (c) 

e = 0.5.

221


Figure 6.10

Example datasets and corresponding perceptrons.

225

Figure 6.11



Step versus sigmoid: (a) step function and (b) sigmoid

function.

228

Figure 6.12



Gradient descent using the error function x

2

+ 1.



229

Figure 6.13

Multilayer perceptron with a hidden layer.

231


Figure 6.14

A boundary between two rectangular classes.

240

Figure 6.15



Pseudocode for model tree induction.

248


Figure 6.16

Model tree for a dataset with nominal attributes.

250

Figure 6.17



Clustering the weather data.

256


x v i i i

L I S T   O F   F I G U R E S

P088407-FM.qxd  4/30/05  10:55 AM  Page xviii



Figure 6.18

Hierarchical clusterings of the iris data.

259

Figure 6.19



A two-class mixture model.

264


Figure 6.20

A simple Bayesian network for the weather data.

273

Figure 6.21



Another Bayesian network for the weather data.

274


Figure 6.22

The weather data: (a) reduced version and (b) corresponding

AD tree.

281


Figure 7.1

Attribute space for the weather dataset.

293

Figure 7.2



Discretizing the temperature attribute using the entropy

method.


299

Figure 7.3

The result of discretizing the temperature attribute.

300


Figure 7.4

Class distribution for a two-class, two-attribute 

problem.

303


Figure 7.5

Principal components transform of a dataset: (a) variance of

each component and (b) variance plot.

308


Figure 7.6

Number of international phone calls from Belgium,

1950–1973.

314


Figure 7.7

Algorithm for bagging.

319

Figure 7.8



Algorithm for boosting.

322


Figure 7.9

Algorithm for additive logistic regression.

327

Figure 7.10



Simple option tree for the weather data.

329


Figure 7.11

Alternating decision tree for the weather data.

330

Figure 10.1



The Explorer interface.

370


Figure 10.2

Weather data: (a) spreadsheet, (b) CSV format, and 

(c) ARFF.

371


Figure 10.3

The Weka Explorer: (a) choosing the Explorer interface and

(b) reading in the weather data.

372


Figure 10.4

Using J4.8: (a) finding it in the classifiers list and (b) the



Classify tab.

374


Figure 10.5

Output from the J4.8 decision tree learner.

375

Figure 10.6



Visualizing the result of J4.8 on the iris dataset: (a) the tree

and (b) the classifier errors.

379

Figure 10.7



Generic object editor: (a) the editor, (b) more information

(click More), and (c) choosing a converter 

(click Choose).

381


Figure 10.8

Choosing a filter: (a) the filters menu, (b) an object editor, and

(c) more information (click More).

383


Figure 10.9

The weather data with two attributes removed.

384

Figure 10.10



Processing the CPU performance data with M5

¢.

385



Figure 10.11

Output from the M5

¢ program for numeric 

prediction.

386

Figure 10.12



Visualizing the errors: (a) from M5

¢ and (b) from linear

regression.

388


L I S T   O F   F I G U R E S

x i x


P088407-FM.qxd  4/30/05  10:55 AM  Page xix


Yüklə 4,3 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   ...   219




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə